Abstract

Authenticated dictionaries are a widely discussed paradig enable verifi-
able integrity for data storage on untrusted servers, sadioday’s widely used
“cloud computing” resources, allowing a server to provid@mof,” typically in
the form of a slice through a cryptographic data structurat the results of any
given query are the correct answer, including that the ateseha query result is
correct. Persistent authenticated dictionaries (PADs$héu allow queries against
older versions of the structure. This research presentemgntations of a variety
of different PAD algorithms, some based on Merkle tree-style datatares and
others based on individually signed “tuple” statementsh(\ahd without RSA ac-
cumulators). We present system throughput benchmarksemtiag costs in terms
of time, storage, and bandwidth as well as considering howhnmoney would
be required given standard cloud computing costs. We cdedluat Merkle tree
PADs are preferable in cases with frequent updates, whiletbased PADs are
preferable with higher query rates. For Merkle tree PADd;bikack trees outper-
form treaps and skiplists. Applying Sarnak-Tarjan’s vemsid node strategy, with
a cache of old hashes at every node, to red-black trees yeddfastest Merkle
tree PAD implementation, notably using half the memory ef thore commonly
used applicative path copying strategy. For tuple PADBpalgh we designed and
implemented an algorithm using RSA accumulators ttEgrs constant update
size, constant storage per update, constant proof sizesudlthear computation
per update, we found that RSA accumulators are so expersvéehiey are never
worthwhile. We find that other optimizations in the litensgdor tuple PADs are
more cost-fective.
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1 Introduction

The recent growth of cloud computing and software-as-aiseiffers an attractive
option for storing data “in the cloud” rather than locallgrfexample, replicating
data to improve fault tolerance. Of course, the cloud comguprovider may well

be untrusted. In situations where one author wants to usel dervices to publish
data to multiple consumers, or to store data remotely, adadgiity is a vital concern.
These situations include outsourced databases [37] angsted or distributed filesys-
tems [24, 20, 31, 12]. Similar problems of untrusted remtieagie occur in commer-
cial remote backup services, p2p systems, smartcard st¢t8g 34], and certificate
revocation lists [26].

Many of these designs can be implemented usinglyimamic authenticated dictio-
nary paradigm DAD) [26, 19]. A DAD is a keyvalue dictionary that permits updates.
Updates are signed by trustadthors The dictionary is stored on untrustedrvers
and queried byglients Query responses are authenticated by the author’s dgigtal
nature.

An authenticated dictionary can be extended to BARor persistent authenticated
dictionary[2, 11], by allowing queries to older versions as well as theent version,
such as in revision control systems [36]. Explicit versiapiplus an external channel to
alert clients to the latest version ID, are essential toatafg version rollback attacks.

For this research, we implemented 2ffelient PAD algorithms, including prior de-
signs based on Merkle trees [2] and our prior work with “tupsesed” PADs [11]. RSA
accumulators [7, 10] have also been proposed as a primitiveuilding authenticated
dictionaries [30]. In this paper we designed and implenckistech a PAD fering
constant update size, constant storage per update, copste size, and sublinear
computation per update, all by using accumulator techrsig&er each algorithm we
measured the time, space and communication overheadendtatey real-world per-
formance that includes the constant factors of digital &igre generation, modular
exponentiation, primality testing, serialization, andah.

In earlier work, we presented a traditional complexity ggaesl of these algorithms [11].
Because our current work measures real implementationsaweeport performance



in terms of milliseconds, bytes, and dollars, leading to s@urprising results. For
example, in comparing PADs using RSA accumulators with PABiag other cryp-
tographic data structures built from hashes and traditidiggtal signatures, we con-
cluded that RSA accumulators areverthe preferable algorithm, despite their superior
asymptotic complexity. Results like this would befdiult or impossible to prove ab-
sent running code.

Our collection of PAD algorithms makeftirent tradefis of CPU, bandwidth, and
storage requirements. The ideal algorithm for any giverkiead will thus depend on
the relative costs of these resources. Rather than gudsssat tradeffis, we instead
normalize them using contemporary costs, in U.S. Dollahsyrged by Google and
Amazon for bandwidth, CPU time, and storage on their EC2 gopEhgine services,
respectively. If we assume that Google and Amazon fieging these resources at their
marginal cost, i.e., that their rates charged for bandwi@®U time, and storage are
close to the actual costs to any provider delivering largentjties of these resources,
then our evaluation strategy should generalize to othedaenas well. Furthermore,
our measurements can be easily extrapolated to allow ansydgsigner to consider a
variety of “what if” scenarios (e.g., what if crypto acceltors allowed a huge speedup
for crypto algorithms) and know which PAD algorithms areelikto be the fastest or
cheapest under their system constraints.

In Section 2, we introduce the properties that a persistaieaticated dictionary
possesses and we summarize the two classes of PAD algorithimgestigate. In Sec-
tion 3, we describe PAD algorithms based on search treesedtidd 4, we describe
our prior PAD algorithms based on signed tuples and intredua new RSA accu-
mulator variation. In Section 5, we describe our PAD implatagons and evaluation
methodology. Section 6 presents benchmark results foreeRAD implementations.
Section 7 presents benchmark results for our tuple-bas&lifplementations, in-
cluding the RSA accumulator variation. Section 8 preseaistic benchmark results
against real-world traces. Section 9 discusses issudmreta scaling these systems
up to larger compute clusters. Section 10 discusses howtttapstate our benchmark
results to diferent scenarios. Finally, conclusions and future work aseusgsed in
Section 11.

2 Background

PAD systems divide the world into three roles. Trusted atstbpdatethe dictionary
by inserting or removing key-value pairs. At any timesrapshobf the contents of
the dictionary can be taken, resulting in a negrsionof the PAD. The author then
sends ampdate blolto the server containing data and authentication inforonetiat
is stored in aepository used by the server to respond to lookup requests from slient
Clients send lookup requests containing a lookup key tog¢hees and receivelaokup
proofof the membership of the key and its corresponding valuepnfrmembership of
that key in the dictionary, signed by the author. What makes@ “tamper-evident” or
“authenticated” is that a malicious server can neitherdieltents about the existence
or non-existence of the stored key, nor lie about the valoeedtfor a key without the
cooperation of the author (or without breaking the undadyiryptosystem).



In an outsourced storage model, the authors and client mipavthe same entity.
In any PAD design, we assume a single author who producesldgignatures and
possibly multiple clients who can verify them. The servamsrusted and clients have
limited state with which to verify the server’s output. Aot are assumed to only
know about the latest snapshot, while the server is assuorstdre all snapshots.

In the next two subsections, we consider two main strucfiord?ADs: those based
on Merkle trees and those based on individually signingnasco

2.1 Tree-based PADs

Given a search tree where each node contains a key, valuavarchiid pointers, we

can build an authenticated dictionary by building a Merkéet[21]. If the root hash of
such atree is signed by the author, a server can prove memiefa key in such a tree
by showing a path in the search tree to the key. A server carepran-membership by
showing a path to the unique location in the tree where thenoeytd have been stored.

When implementing a PAD, the author only needs to manageenrelstree, that
of the latest snapshot. On the server, each snapshot iscallygiistinct Merkle tree
with a different signed root hash. Rather than storing each snapshatissnct tree,
we can exploit the similarity between trees across snapdlaoimplement a more
space-#icient repository on the server. The design of the repositoay dfect the
performance of the server or its memory usage, but hadfiesteon the size of an
update or lookup proof.

There are several Merkle tree-based approaches for implémehe repository. In
Section 3.3, we describe fourtBérent implementations and in Section 6.2, we compare
their performance. We could use any balanced search tresupportsO(1) expected
(not amortized) node mutations per update, such as AVL [XEdrblack trees [17].
The balanced tree algorithm has dfeet on the sizes of an updates and lookup proofs.
We like treaps [4] for their set-uniqueness properties beiadgo implement skiplists
(see Section 3.1.2) and red-black trees (see Section 3.1.3)

Combining the choice of repository designs and the choideat#€nced tree algo-
rithms, we have 12 dlierent PAD implementations that we can compare. In Sectibn 3.
we describe our implementation of all three algorithms an8dction 6.1 we compare
their performances.

2.1.1 Set-uniquerepresentations

Treap and skiplist designs are normally probabilistic, Hattthe ultimate layout of
the data structure depends upon random coin flips. We camnuatee these data-
structures by using a hash function over the key stored inde.n®ur deterministic
treaps and skiplists become “set-unique,” meaning thadwgtenticated dictionaries
with the same contents will have identical tree structurésve build Merkle trees
from these treaps or skiplists, then any two dictionarieth wdentical contents will
have identical root hashes. Set-uniqueness [3, 27] als@snidilese data structures
history independent [23]. The root hash that authenticsueh a treap or skiplist will
leak no information about the insertion order of the keysfdhe past contents. Such



semantics may be valuable, for example, with electronie wtbrage or with zero-
knowledge proofs.

History-independence is also useful if a dictionary is usesitore or synchronize
replicated state in a distributed system. Updates mayeatoiweplicas out-of-order,
perhaps through multicast or gossip protocols. Also, bypaisi set-unique authenti-
cated data structure, we caffieiently determine if two replicas are inconsistent.

History independence makes it easier to recover from bac&upreate replicas. If
a host tries to recover the dictionary contents from a backgmother replica, history
independence assures that the recovered dictionary haaihe root hash. Were a
non-set-unique data structure, such as red-black tred thealiterent insertion order
between the original dictionary and that used when recngesiould likely lead to
different root hashes even though the recovered dictionanhiesshine contents.

2.2 Tuple-based PADs

Unlike authenticated dictionaries based around searel,tteple-based authenticated
dictionaries and persistent authenticated dictionariss constantproof size, regard-
less of the number of keys in the dictionary. At their coreythare based around signed
statements of the form:

“Key k; has value ¢ and there are no keys in the dictionary in the interfkq) kj.1)."

These statements are representetupkes ([kj, kj+1), ¢j), and can be used to de-
sign an authenticated dictionary. A PAD can be designed snebing these tuples to
additionally include version numbers. In Section 4 we déscsuch a PAD, including
optimizations to reduce signature overhead by using spton| and reduce storage
on the server by including version number ranges in tuplesalso propose a new
optimization where we use RSA accumulators [7] to reducernsanication costs. In
total, we implemented 9 variations on tuple PADs and in $ecti we analyze their
performance.

3 TreePADs

In this section we describe tree-based PADs. Every treeebBAD is a Merkle tree,
but we must make two orthogonal design choices: the treebialg operations, and
how the repository is stored. The repository logically éstssof a forest of trees,
one for each snapshot, but we wish to share storage acressttrsave space. Tree-
based PADs based around path copying red-black trees aplistskivere originally
designed by Anagnostopoulos et al. [2]. Extensions to sugparnak-Tarjan trees
were presented our prior work [11] which we briefly summarize

In a Merkle tree, each nodeis assigned aubtree authenticator.l with the
following recurrencex.H = H(x key H(x.val), x.left.H, x.right.H) whereH is a cryp-
tographic hash function.

A lookup proof seen in Figure 3 and returned on a lookup request, is a drabét
keykyis inthe tree. It consists of a pruned tree containing thecbgaath tdk,. Subtree
authenticators for the sibling nodes on the search patmaheded in the proof as well
as subtree authenticators of the children of the node auntgk;, if ky is found. From



this pruned tree, the root authenticator is reconstructeblcmmpared to the trusted
root authenticator signed by the author. We can prove thayasknot in the tree by
showing a path to the unique leaf location where that key dotherwise be stored.

For a balanced search tree, a lookup proof has@{kagn), and can be generated
in O(logn) time.

Conventionally, the subtree authenticators for each nottesi tree will be precom-
puted and stored in the node, but we note that these valuéeagacomputed whenever
needed, on the fly, from the keys and values in the subtféerjmy a variety of time,
space, and design tradé&n As such, keeping the hashes around can be thought of as a
form of caching.

Without a cache, generating a lookup proof requitée) time for recomputing
subtree authenticators of elided subtrees.

3.1 Different tree-balancing algorithms
311 Treap

Treaps [4] are a randomized search tree that can implemécti@gry with aO(log n)
expected cost of an insert, delete, or lookup. Treaps stipfimient set union, dfer-
ence, and intersection operations [8]. Each node in a tesgipen a key, value, priority,
and left and right child pointers. Nodes in a treap obey thedsdrd search-key order;
a node’s key always compares greater than all of the keys ilefit subtree and less
than all of the keys in its right subtree. In addition, eactenm a treap obeys the heap
property on its priorities; a node’s priority is always lékan the priorities of its de-
scendants. Operations that mutate the tree will perforatioots to preserve the heap
property on the priorities. When the priorities are assijaerandom, the resulting
tree will be probabilistically balanced. Furthermore,egivan assignment of priori-
ties to nodes, a treap on a given set is unifueterministic treapsan be created
by assigning priorities using a cryptographic digest of kg, creating a set-unique
representation [4].

Assuming that the cryptographic digest is a random oranl@xpectation, each
insert and delete only mutat€1) nodes, consisting of one node having a child pointer
modified andD(1) rotations. The expected path length to a key in the tre@glogn).
The worst case i©(n), but this is unlikely to ever occur.

3.1.2 Skiplists

Papamanthou et. al. [2] described PADs based on path copgdiplack trees and
skiplists. In this section, we describe skiplists and hogytban represent an authenti-
cated dictionary. A skiplist [32] is a data structufféasing logarithmic lookups, inserts,
and deletes. A classic skiplist is a singly-linked list epithat nodes may have several
outgoing links, stored in a variable-sized array, which s&ip over a large number of
list nodes.

IProof sketch: If all priorities are unique for a given set e/, then there exists one unique minimum-
priority node, which becomes the root. This uniquely digidee set of keys in the treap into two sets, those
less than and greater than that node’s key, stored in thardftight subtrees, respectively. By induction, we
can assume that the subtrees are also unique.



An alternative formulation of skiplists exists, shown ig&re 1, where each variable-
sized array is represented as a “tower” of nodes where eatdras only two outgoing
links. This forms a representation of a skiplist resembéirsgt of parallel sorted linked
lists. Each key in the skiplist is assigned a maximum l&ygk when it is inserted, and
it will be placed in the level-nax linked list and all lower-level linked lists.

Maximum levels are assigned using an exponential distabutThe level-0 list
contains every list node. The levigh list contains one in every st nodes on average.
In this example, key§3, 6, 9, 15} are at level 0, key8} is at level 1 and key&, 11} are
atlevel 3. If the level of a key is chosen deterministicattyrh the key, the skiplist over
a set of keys will be set-unique. Searching a skiplist ingslstarting in the upper left
and “skipping” many nodes by using the higher level linksip8g&ts offer an expected
O(logn) update time and lookup time. Just as with a treap, the wease¢-lookup and
update time i€(n).

Our applicative tree-representation of skiplists is bamethe tower-style skiplist
authentication trees as used in Goodrich et. al. [14]. Werdwgoon their constructions
in several ways, described below.

During lookups, not every edge in a skiplist is used. Extrgesd represented in
grey in Figure 1, are only needed for performing updates. Wéense that completely
omitting the extra edges lets us store a skiplist as if it veer@rdinary binary tree; it
can then be made persistent using any technique applicabldinary tree. To this
end, we have redesigned our skiplists to not require thesa edges. In Figure 2 we
present our final representation of this skiplist.

In addition to a new formulation of skiplists as binary treear lookup proofs
improve on prior work in authenticated skiplists. Lookupgis consist of a path from
the root to node containing a lookup key. A lookup proof shguhon-membership
must prove that the interval between the two neighboring kelyere the lookup key
would otherwise belong does not contain the lookup key.

In the original formulation of authenticated skiplists pamembership is proved by
including the right siblings of each node in the path fromrthat to the lookup key. For
example, to prove that the key 7 is not in the skiplist in FegRythe server includes the
bold-faced edges along with thed, ) edge at_; and the (511) edge at,. When
proving non-membership of a lookup key that occurs aftervali® node without a
right sibling, the proof of non-membership uses the rigltcessor key stored in that
node.

We can improve on this construction. Observe that in a stiplhe successor of
a level-0 node without a right sibling is always the key stbire the right sibling of
the first ancestor of that node with a right sibling. If thekap proof already contains
the right sibling of every node in the lookup path, then thecegsor node is already
included in the proof, removing the need for any nodes toieiiyl store the keys of
their successors. By removing the non-tree-like behavistasing successor keys, this
construction simplifies the design and implementation afaip operations.

We can further optimize the proof when the author is trustecbtrectly build the
skiplist. Instead of including every right sibling in theokup proof, we only need to
includeoneright sibling. If we want to show that a kd¢ is not in the skiplist, we do a
search foK. If we find a levelLo nodeN with keyk; < K and a right child containing
k. > K, then by including bottN and its right child, we can prove thitis not in the
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Figure 1: Skiplist representation. Dash&tjure 2: Skiplist query for “7.” High-

arrows represent redundant edges thatlayleted nodes will be included in the re-

omitted in our implementation. sult proof to demonstrate that “7” is absent
from the result.

skiplist. If N does not have a right child, then the successor key te stored in the
right sibling of the first ancestor dfl that has a right sibling, if that right sibling has
key k, > K, thenK is not in the dictionary. In our construction, only this onght
sibling in the lookup path needs to be included in the prooérehs before, every right
sibling was included. For example, in Figure 2, the ldyghode 6's first ancestor with
a right sibling is the level; node 5, whose right sibling contains an 8. This is 6’s
successor in the skiplist. The highlighted edges and nodesdvgufice to prove that
the value 7 is absent from the data structure. This optinozahakes our construction
of a skiplist lookup proof include approximately half of thamber of nodes as prior
constructions.

3.1.3 Red-black trees

Authenticated dictionaries can also be built with red-klxees [2], dfering O(1) ex-
pected node mutation§(log n) worst-case update costs, aBfogn) worst case path
length. Red-black treedter a tighter bound than skiplists or treaps, with a logarithm
worst-case bound, not just a logarithmic expected-casedouNe omit a detailed
description of red-black trees here, but we note that redibtrees are not history
independent. They should only be used when such semantic®arequired.

3.2 Persistent binary search trees

Persistent search tree data structures extend ordinaighdeee data structures to sup-
port lookups in past snapshots or versions. Persistenstiatetures have been exten-
sively studied [9, 18], particularly with respect to furmtal programming [29, 5]. In
this section we summarize the algorithms proposed by SaandKrarjan [35], who
considered approaches for persistent red-black searek. tfEheir techniques apply
equally well to treaps, red-black trees, or our version dfiplist, as described above.
Logically, a persistent dictionary built with search trégesimply a forest of trees,
i.e., a separate tree for each snapshot. The root of eactesd thees is stored in a

2For simplicity in reporting results in our evaluation, welwgioss over the dference between expected
and worst-case bounds.



Figure 3: Graphical notation for a lookup proof figk or proving the non-membership
of N. Circles denote the roots of elided subtrees whose childpeyed out, need not
be included.

snapshot arrayindexed by snapshot version. Historical snapshots aeeifrand im-
mutable. The most recent, aurrent snapshot can ostensibly be updated in place.
Whenever a snapshot is taken, a new root is added to the siiapshy and that snap-
shot is thereafter immutable.

Sarnak and Tarjan proposed three strategies for repragethi logical forest of
trees: copy everythingpath copying andversioned nodes They range fronfO(n)
space td)(1) space per update. Thesffeient physical representations store the same
logical forest. The simplestopy everythingcopies the entire tree on every snapshot
and cost€(n) storage for a snapshot containingeys.

Path copying uses a standard applicative tree, avoiding the redundamaigg of sub-
trees that are identical across snapshots. Nodes in a ppiting tree are immutable.
Where the normal, mutating treap, red-black, or skipligoathm would modify a
node’s children pointers, an applicative tree instead makenodified clone of the
node with the new children pointers. The parent node wilb dle cloned, with the
clone pointing at the new child. This propagates up to thé, rmeating a new root.
For any of red-black trees, treaps, or skiplists, each @pddk createO(1) new nodes
andO(logn) cloned nodes in expectation. When a snapshot is takeneaftey update,
skiplists and treaps will usB(logn) expected storage per update while red-black trees
will have a worst-case bound @f(logn) storage per update.

Versioned nodes are Sarnak and Tarjan’s final technique for implementindigir
persistent search trees and can represent the logical fatk€(1) expected amortized
storage per update. We will first explain how versioned noéest work and then, in
Section 3, we will show how to build these techniques intodeérees with Merkle
hashes.

Rather than allocating new nodes, as with path copyingjaees nodes may con-
tain pointers to older children as well as the current cbkitdr While we could have
an infinite set of old children pointers, versioned nodey drasick two sets of children
(archivedand currenf) and atimestamp T The archived pointers archive one prior
version, withT used to indicate the snapshot time at which the update catso
that a tree traverser knows whether to use the archived cgriehildren pointers. A
versioned node cannot have its children updated twice. tfder’s children need to
be updated a second time, it will be cloned, as in path copyling clone’s children
will be set to the new childrenx’s parent must also be updated to point to the new



Figure 4. Four snapshots in a Sarnak-Tarjan versioned-trede starting with an
empty tree, then inserting, then insertings, then deletings. We show the archived
children to the left of a node and the current children to tgbktr Note thaR is modi-
fied in-place for snapshot 2, but cloned for snapshot 3.

clone, which may recursively cause it to be cloned as wetsiarchived pointers were
already in use. In Figure 4 we present an example of a verdiooée tree.

Each update to a treap or red-black tree requires an exp@¢igdotations, each
of which requires updating the children of 2 versioned npdeguiring a total ofO(1)
expected amortized storage per update. To support mulijpdates within a single
snapshot, we include a last-modified version number in eackioned node. If the
children pointers of a node are updated several times witténsame snapshot, we
may update them in place. As with path copying trees, savicapa of the root node
in the snapshot array is §icient to find the data for subsequent queries.

3.3 Makingtrees persistent and authenticated

Although Sarnak-Tarjan trees are a very concise way fongesés store a PAD’s snap-
shots, the server must be able to generate lookup proofeatetinand of clients. Gen-
erating responses to lookup requests requires havingesuatrthenticators for pruned
subtrees that are not included in the proof. When using K&fagan versioned-node
trees, the subtree authenticator of a node will depend osriapshot version being
used. Consequently, a versioned node cannot simply keelpasteof its children.

Subtree authenticators can always be recomputed fromg@estiructure by visiting
every node in the subtree. This requires no additional geobaut this cacheless strat-
egy is indficient, withO(n) lookup proof generation times. Our prior work presented
several caching strategies to either store or dynamiocadiglculate subtree authentica-
tors [11]. The tradefdis of different caching strategies are shown in Table 1.

Each versioned node can cache the changing authenticatevdoy version in
aversioned referencerhich can be stored as an append-only resizable vector of pai
containing version number transition pointaind subtree authenticator valugg(vy, r1),
(V2,r2),... (V. rk))). The cache is undefined far < v;. The cached value ig for
Vi £V <V, Iy forvu < v < vz, and so forth. The cached valuerisfor versions
> v, through the current version, = o means that the cache is invalid and the subtree
authenticator must be recomputed by visiting the nodelsl@m. Lookups by version

10



Caching strategies Storage Lookup proof
(per update) (time)

No cache 0(1) O(n)
Cache everywherge O(logn) O(logn)
Median layer 0(1) O(+/n)

Table 1: Caching strategies for subtree authenticatorSiaraak-Tarjan tree.

number use binary search over the vectad{togk) time.

Inthecache everythingtrategy, whenever that node’s subtree authenticatogesan
in a new snapshot and results in logarithmic storage pertagaal logarithmic time to
generate a lookup proof. Thidfers the same big-O storage as path copying but with
lower constant factors because updating a cache is mucpehisan cloning a node.

In the cache mediaistrategy, the repository only caches authenticators omgie
dian layer of the tree, i.e., a tree containimgodes will have depth lggn), so the
server caches on all nodes at deB%%ﬂ. Compared to having no cache at all, only
constant storage is expected per update, while the timentergte a lookup proof de-
creases fron®(n) to O(+/n).

3.4 Implementation details

We implemented treaps [4], red-black trees [17], and skiplj32]. For the server’s
repository of persistent trees, we implement path copyimdythe three variations of
storingrecomputing subtree authenticators on Sarnak-Tarjanoved-node trees as
discussed above, giving us 123fdrent tree-based PAD variations to benchmark. We
present performance results from native4Omplementations.

Because we are supportinglérent types of applicative representations, our red-
black, skiplist and treap implementations ardy allowed to “mutate” the children of
a node through an abstract interface which, given a node graraf new left and
right children, returns a node representing the result pfyapg those changes. The
result depends on the underlying repository implememaiidith path copying, it will
always be a clone. With Sarnak-Tarjan versioned trees, yt@nanay not be a clone.
This requires that the implementations of these algoritheisttom-upandmutation-
free In addition, because nodes store keys and values, we massrpe node identity
during rotations and other operations, reusing nodes theddy store the needed key
and value, updating their children through our abstraetfate, rather than needlessly
cloning those nodes.

4 Tuple-based PADs

In prior work, we presented a new design for implementing BAlth a series of
individually signed messages, callemple-based PADEL1]. We briefly introduce our
design here, both at its most basic and with all of our optatidns. In Section 4.3, we
extend tuple PAD designs to use RSA accumulators, redueirigin operations from

11



O(logn) to O(1) time. Our implementation is described in Section 4.4 laeachmarks
appear in Sections 7 and 8.

4.1 Basictuple PADs

Tuple PADs, at their most basic essence, are a list of sigtageinsents made by the
author for every version of the dictionary. For each /kejue pair k,ci), at every
version numbey, the tuple PAD will contain a signed statement, by the autfidhe
form (vn, [Ki, ki+1), ) which denotes that for th@" version, the ke has value; and
that there is no other key in the dictionary whose value isigrethark; and less than
ki.1. Two additional special-case entries deal with the keygedass than the smallest
key and the key-range greater than the largest key. Keys tmuihtegers, strings, hash
values, or any type that admits a total ordering.

For a dictionary withm versions, each of which hasey/value pairs, this requires
the author to generatex mdigital signatures, which is clearly quite expensive, et t
benefits for the server and client are clear. The client camygihe server for a given
key k at a particular versionr and the server just needs to return the proper signed
tuple. If the requested key doesn't exist, the server camnmehe tuple whose key
interval covers the requested key to prove its absence.

Storing tuples with a persistent search tree.  Our next challenge is how to store
tuples and signatures so that they may be easily found diooigips. We need an
auxiliary data structure that can store the varying set pleirepresenting each snap-
shot, and for any given snapshot version, we need to be afiteltthe tuple containing

a search key. This can be easily done with a persistent sgaelthat supports pre-
decessor queries, such as tB€l) persistent search tree data structure described in
Section 3.2.

Each snapshot in the PAD has a corresponding snapshot inxiieey persistent
search tree for storing the tuples representing that soap®thenever an update oc-
curs, the author will indicate which tuples arew(i.e., their key interval or value was
not in the prior snapshot), and which tuples are talbketed(i.e., their key interval
or value is not in the new snapshot). The remaining tuplesedireshed At most two
tuples will be deleted and one tuple will be new. The authangmits signatures on
every new or refreshed tuple.

This data-structure requir€3(1) storage per update for managing the tuples rep-
resenting the PAD and can find the matching tuple and sigadturany key in any
snapshot in logarithmic time. Unfortunately, the additibcosts 0fO(n) signatures for
every snapshot must also be included in the communicatids@mage costs. Reduc-
ing these costs is the challenge in building tuple-basedsPAD

4.2 Fast tuple PADs

We wished to reduce the author’s costs, noting that betwegitva versions, most of
the keyvalue pairs will not change. In our prior work, we considesegriety of difer-
ent optimizations and structures which we have now impldeteim our benchmarks.
We summarize that work here.
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Superseding. Let's say the value; of a keyk; has remained constant for several ver-
sions and the subsequent Key has likewise been unchanged. When the author signs
the tuple for the most current version, the author can irelathnge of past version
numbers over which the statement is also valid. This alltwesserver to discard older
signatures that refer to the same key, reducing servergg@pace t®(1) per update.
The author must still sign and sef@{n) signatures per snapshot to the server.

Our implementation further optimizes this by adoptiigptweight signaturef2?2].
Rather than requiring the author to sign the same tuplenaga again, the author first
computes an iterated hash(H(H(....H(R)))) for some random numbd® and signs
that along with the initial tuple entry. Subsequeefreshesof the tuple need only
reveal successive preimages of the hash function, savenguthor from the expense
of recomputing so many digital signatures.

Speculation. The author cannot predict the future, of course, but itfaassumption
that most keys aren’t changing. We introduced a structuméniscent of a generational
copying garbage collector, where there are now two sepaedteof signed tuples.
The young generatioB contains only keys that are recently modified, while the old
generatior3; contains all other keys. Once every epoch, the author gerseaanew
set of tuples inG; and an emptyso.

The tuples inG; contain speculative signatures that cover the range frentire
they are inserted until the (future) end of the current epaditserts within a given
epoch then do not require any updates to the signatur&s.inOf course, a client
making any given query will require results from bdd and G;, where the young
generation describes whether anything relevant has cdaetgive to what's stored in
the old generation.

If we assume a snapshot is taken after every update, therawiépoch length of
E, Go will have at mosE + 1 tuples. The author must sign all of the tuple&ineach
time a snapshot is taken, and, once everysnapshots, the author must signral 1
tuples inG;. The amortized number of sighatures per update is@{&s +n/E;), with
a minimum whenE; = +/n. Speculation can be generalized to multiple generations.
With C generations, the author must sign and communi€{+/n) signatures per
update instead dD(n) if a snapshot is taken after every update.

If DSA signatures are used, latency can be reduced at thieddtan epoch by
partially precomputing signatures [25]. In addition, splation can also be combined
with superseding and lightweight signatures to reducettirage on the server, ©(C)
per update.

4.3 Tuple PADsbased on RSA accumulators

RSA accumulators [7] use RSA exponentiation to generatastant-sized integer that
can be used to authenticate set membership. The RSA acdonisldhen signed using
a traditional digital signature. The server proves thatlament is in the set by sending
item in question, the accumulator as signed by the authegdithor’s signature, and a
constant-sizeditness

Dynamic accumulators [10] permitficient incremental update of accumulators
without requiring that they be regenerated from scratch.cuiulators have been
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widely proposed for use in systems such as our (see, e.gdr@beet al. [15]). We
now present a design that uses a signed accumulator as aesuohmary of the set
of tuples representing a snapshot, thus allowing for corsti@ed lookup proofs and
update messages.

Background.

Consider storing a set @fr-bit prime number$; . .. pe. The accumulator storing
these keys works as follows: The author selects-bit modulusN = pgand a gener-
atorg with s > 3r. p andq are strong primes, arglis a quadratic residue madd. p
andq are kept secret. The RSA accumulafoover this set igP-Pe. The accumula-
tor A is then signed. To prove that a kkyis in the set, the server supplies a witness
W, = gPP2-P1Pa--Pe (To prevent keys from having a mathematical relationshith w
one other, prime numbers must be used to represent the sdienein

The author, with its knowledge of the factorization Mf may insert or remove
keys from the accumulator witB(1) exponentiations per update. Witnesses can be
computed by an untrusted server without the knowledge ofansets. The witness for
any single key can be computed wiil{e) exponentiations and the set of all withesses
can be computed with a@(eloge) algorithm [6].

A membership proof that primeg; is in the set, consists ofA(W, p;), and the
author’s signature oi\. The proof is verified by checking the signature Arand
thatA = (W))P. By the Strong RSA Assumption [6], it is hard for a computatio
ally bounded adversary to find> 1 such thay = A mod N without knowing the
factorization ofN.

Bari and Pfitzmann [6] observed that we can genepairde representativefor
arbitrary keys in the random oracle model by cryptograghidashing the key and
then appending a fixed numbieof extra bits. t is chosen such that there is a prime
number in[2!(X), 2/(X + 1)) with high probability. The value of those extra bits is
chosen such that the concatenation is a prime number. If@utghich this is not
possible cannot be stored in the RSA accumulator. Papamaethal. [30] recently
implemented an authenticated hash table following thigytes

In our design, we require that the conversion from a hashevalto a prime rep-
resentative is deterministic. This ensures that the RSAraatator for a given set is
uniquely defined by the inputs to the set and can be recomuardthe keys being
inserted. To do this, we follow Bari and Pfitzmann [6], tegtfuccessive integers until
we find a prime number.

Design. By cryptographically hashing tuples and then convertirgrthinto prime
representatives, we can use RSA accumulators to authendiset of tuples as a single
O(1) accumulator that can then be bound to the version numitisigned by the
author. DefineA(vy) to be the accumulator value for version A(vg) authenticates
tuples of the form ;j, kj.1), c;) containing a key range and a contents. These tuples
can omit the version numbeg because it is in the signature over the accumulator.
Each update to a PAD now only requires adding or removing &t @¢L) tuples.
The accumulator for the next snapshéfyq.1), can be computed by incrementally
modifying A(vg) at a cost 0fO(1) exponentiations per dictionary update to add or re-
move tuples. Updates requif®1) communication; the author sends the key being
inserted or removed from the PAD, the new accumulator, aaditpnature. Storage
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increases by onlyD(1) per update, just to store the changed key. The served coul
compute witnesses lazily upon lookup requests at a ca3frjfexponentiations, using
no additional storage. Alternatively the server can expgefn) additional storage per-
snapshot for precomputed witnesses. The server can preteminesses by itself
with nlog, n exponentiations. Alternatively, the author can increraiypnupdate then
witnesses irO(n) exponentiations and send them along with the update.

When a server receives a lookup request from a client forkkgg snapshoty,
the server returns the accumulafgvg), bound to the version numbey and signed
by the author, a tupl@ = ([kj, kj+1),cj) with kg € [Kj, Kj+1), prime representative
pi, and a witness for tuplein snapshot\, Wi,,). The client verifies that the prime
representative corresponds to the returned tl{r%q = H(T), that the accumulator
authenticates the tuple\f,,)” = A(vg), and that the signature on the accumulator is
valid. For dficiency, instead of sending the full prime representgtiyenly the dfset
from the hash of the tuple to the prime representative 2'H(T) is sent.

Unlike standard accumulator schemes, this representatiens super-gicient proofs
of non-membership. The tuple = ([k;, kj.+1), ;) attests that there is no key in the in-
terval ;, kj.+1) is in the set.

Speculation and witness computation. Accumulator-based tuple PADs can be com-
bined with speculation, as described in Section 4.2. Thieimses the size of a lookup
prooftoO(C) but reduces the costs of withess computation f@mlogn) to O ((C +1) {/ﬁ)
exponentiations per update. (Again, as we have throughisgtire paper, we assume
that after each update a snapshot is taken.)

Rather than individually sign each generation’s accunoul&(G, v), A(G1, v) and
so forth, we could instead collect these accumulators irgbaat hash chaifB(v) =
H(A(Go, V), H(A(G41, V), H(A(G2,V) . . ))), and then bind the root of this hash chain,
B(v), to its version number and sign it. However, signing eaahegation individually
only uses in times more signatures than using a hash chain.

On each update to the PAD, the author perfo®(8) amortized exponentiations,
one to update the accumulator 8, and the remaining exponentiations account for
the amortized costs of updating the accumulators for therag@nerations. The author
then transmits the update and the new sigB@d+ 1) to the server, who can determin-
istically update its copy of the PAD.

When using speculation, onfgg, containingO( ¥/n) tuples, is updated on every
snapshot. The amortized cost for computing witnesses dlvgemerations using the
O(eloge) algorithm isO((C + 1) ¥/n = logn). The server must store these witnesses at
an amortized cost dD(C 4/n) per update to the PAD.

Accumulators and tuple superseding. When we first discussed tuple superseding,
in Section 4.2, it was used to reduce the signature storagbeoserver. This same
principal may be applied to witness storage on the servaadoumulators.

We alter the tuples stored in the accumulator to include #rsion number when
they are created, e.gvq( [K;j, Kj+1), ¢j). If the accumulatoA(vy.s) contains that tuple
and is signed by the author, we consider the tuple to be valicall versionsv €
[Vg, Vg+s]. Thus, when a client queries for a kkyn snapshoty (wherek € [k;, kj+1)),
the server may send as a proof a sigi€d,.;), the tupleT = (vq, [K;, Kj+1), Cj) with
k € [kj, Kj+1) andvy € [vq, Vg+s], and a witness proving that € A(vg.s). The same
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response can authenticate any versigre [vq, Vg.]. Instead of storing one witness
for each snapshot, the server now can store only one wittiessne inA(vg.s) that
authenticates.

As before, we assume a snapshot is taken after every updsteasithe situation
described in Section 4.2, each time a snapshot occurs thersaust generate a full
set of witnesses. At most two of those witnesses will be favipeereated tuples.
The remaining witnesses are for refreshed tuples and casrsege and replace the
witnesses previously stored. Computation cost is the shotehe per-update storage
costs drop taD(1).

Accumulators, tuple superseding, and speculation can be combined to form our
final PAD design, ffering constant time on the author per update, constant cairmu
cation per update, constant storage per update on the sardeonstant lookup proof
size. Computing a new set of witnesses is sublinear in thebeunmof keys in the pad
at O((C + 1) ¥/n) exponentiations per update. We individually sign eachegation’s
accumulator in order to independently choose witnesseas €tifferent snapshots for
each generation.

4.4 Implementation details

Tuple PADs dfer a more complex set of design choices, including the opétitns
described in Section 4.2. Apart from signing each tupleiidldially, tuple-superseding
may be used alone, or in combination with lightweight signes. Any of these three
designs may be combined with speculation. In addition ts, thie built the three
RSA accumulator-based designs described in Section 4 8infplementations are in
Python, using native code for most cryptographic primgive

5 Implementation and methodology

Our code is a hybrid of €+ and Python, connected with SWIG-generated interface
wrappers. We used OpenSSL to perform DSA signatures.

Our initial implementation of each of the 21 algorithms wasPiython. Python
made it much easier to design correct algorithms, debug raptementation, and
cleanly modularize the code. We then progressively pottediebugged algorithms to
C++, function by function and module by module while presentimgoriginal Python
implementation and applying our Python test cases againste+ implementation.
We used profile-based analysis for our portirfiipe, only porting modules and func-
tions that were not bottlenecked in cryptographic or exgs++ code. To guide these
choices, we separately measured the time spent in crygtoigraperations, serializa-
tion, and other areas.

We first ported persistent search trees te+Cto support our tree-based PADs,
yielding huge performance increases in the non-cryptdgcagnde; authors generated
updates 4 times faster, servers processed updates 7.5ftistes servers generated
lookup replies 27 times faster, and clients were able tofywéhie replies 15 times
faster.
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For tuple PADs, our current benchmarks show that crypto @ergive enough
that there would be less performance benefit in rewritingatiiior or client code in
C++. On the author, our algorithms spend at least 50% of theie fimmunavoidable
cryptographic operations (see Table 7). Furthermore, asilvdiscuss in Section 5.3,
we will be evaluating our algorithms based on cloud-commuthonetary costs. Even
without an dficient G++ implementation, the dollar-costs of bandwidth usage fptetu
PADs swamp the dollar-costs of the computation when geingrag¢plies to lookup
requests, so there is no particular benefit from doing the gort.

All of our benchmarks were run on an Intel Core 2 Duo 2.4 GHakimachine
with 4GB of RAM running in 64-bit mode and only using one covge used Python
2.6.4 and compiled our €+ code with gcc 4.3.4. As public-key cryptographic op-
erations like RSA can be done with variable key lengths,itigdff speed for cryp-
tographic strength, we selected paramaters at the “11&bitrity level” [28]. Keys
and values are assumed to be 28-byte hashes and modulatiapesse done with a
2048-bit modulus. All cryptography is performed in nativeOC++ code.

5.1 Serialization

For completeness, our evaluation includes the actual sizesessages used in our
PAD system. To this end, we serialized each update from tti®aweach request from
clients, and each reply from the server. Rather than emamgomanual construction of
mutually compatible serialization code in botk-€ and Python, we used the Google
protocol-bufer 2 library to do serialization for us. Protocol fiers support nested
message types and have a very low space overhead. Protéiesslmenerate very fast
C++ code. The generated Python code is limited by the speed &ttien interpreter
but is still reasonably fast.

5.2 RSA Accumulators

We used the GMP library for all modular operations. Our acalators use 184-bit
prime representativésThe prime representative of a tuple must be found detesmini
tically. The SHA-1 hash of a tuple is concatenated with 24 hits and treated as an
integer. The prime representative is chosen as the nuriigisoaallest prime number
greater than that integer, found by performing 82 MilleiRg33] primality tests (as
advised by NIST [28]) to confirm a candidate representativae to the expense of
finding a prime representative, the author sends ffeebto the prime representative
along as a hint. In our implementation, we perform all wisneemputation on the
server.

3http://code.googIe.com/p/protobuf/

4Implementing the 112-bit security level would properly ueg 248-bit prime representatives based
around SHA-224. Our current crypto library limited us to SHAashes. Our results therefore underestimate
the costs of RSA accumulators.
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| Amazon Google

CPU time (centfhour) 8.5 10
Storage (cent&B*month) 15 15
Bandwidth (cent&B) 10-17 10-12

Table 2: Costs charged by Amazon EC2 and Google AppEngingdad-computing
and storage.

5.3 Cloud provider economics

Given the tradefiis in our various implementations, with some algorithms neog
more computation and others requiring more data transomsgiere is no simple way
to make categorical statements as to the relative stremngtbse algorithm over an-
other. We decided to focus on theonetary cosbf the algorithms as they might cost
somebody to host a computation on third-party “cloud conmggitresources, such as
Amazon’s EC2 and Google’s AppEngine. (Monetary optimizativas previously used
by Gray et. al. [16] in generating their “five minute rule” fsading memory for disc
accesses.) Table 2 presents current rates for these pravigigen that both providers
charge very similar prices, we will use numbers from Amaz@2 Eor our evaluations:
$.085 per CPU hour and $.13 per gigabyte sent by the servertioo=

While the absolute prices may vary in the future, what mafi@rour analysis is the
relative prices of storage, bandwidth, and CPU cycles. We will assilnaiethe author
is spending the money and will attempt to minimize the totadts for themselves
and the possibly outsourced server. For simplicity in owl@ation, we will assume
that cloud providers charge by CPU time only while the taskxscuting. Or, if a
cloud provider charges by wall-clock time, the CPU utiliaatis 100%. In Section 10,
we will discuss how our performance numbers can be used tgznscenarios with
different relative costs of bandwidth and computation.

5.4 Methodology

We have too many €lierent algorithms to compare them all directly. We reduce the
complexity of our evaluation by first performing microbendrks to determine opti-
mal parameters for each algorithm. We then make compar&woss algorithms with
longer traces.

In Sections 7 an@?, we evaluate the performance of tree PADs and tuple PADs
with ourgrowing microbenchmankhere we start with an empty PAD, then insert a key,
take a snapshot, perform a random query against a randorsisytapnd repeat the last
three steps until the dictionary size exceeds a limit. IrtiSa@, we present our results
of running a macro-benchmark of thefférent PAD algorithms’ performance when
used to store a constantly changing set of values taken frtneica of e-commerce
prices.

For each benchmark we evaluate its raw performance on thempublisher, and
client. We then evaluate the algorithms’ coffieetiveness in the context of a cloud-
computing environment. For each algorithm, we can evaliegteelative contribution
of bandwidth or CPU time to the monetary costs of an updatdaulaup. We observe
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that transmitting an extra kilobyte of data costs just astmag:computing for 1190"

of a second. This defines tipeovider equilibrium rate measured in KB. An algo-
rithm need not be perfectly balanced to be optimal, of cqunsethis demonstrates that
an optimal algorithm may well tradefcsomewhat more communication for a greater
savings in computation or vice versa.

We define thaupdate bandwidth rati@s the result of the dividing the update size
(in KB) by the time to perform an update, in secohda/e define théookup bandwidth
ratio similarity. Both are measured in K8 For updates, we include time spent on the
author and server. For lookup proofs, we only count costherserver.

We can compare the bandwidth ratio of an algorithm to the igesvequilibrium
rate to determine whether bandwidth or CPU time is resptafibthe majority of the
monetary costs of an algorithm. When the bandwidth rationcflgorithm exceeds the
provider equilibrium rate, the bandwidth is responsibletf® majority of the costs.

Incidently, this evaluation methodology also measuresifitiate costs, verification
costs, and proof sizes of dynamic authenticated dictiesarased on these designs.
Recall that the only dierence between a PAD and DAD is that the server for a DAD
will purge data from older versiohs

6 Tree PAD microbenchmarks

We first consider the relative performance of treaps, redfokrees, and skiplists
against microbenchmark loads. We also consider higiently these tree-like struc-
tures reuse state across versions, comparing path copyiithieee Sarnak-Tarjan vari-
ations.

6.1 Comparing treestructures

Ouir first evaluation considers which type of tree-like ddtacture runs fastest. We
performed a growing microbenchmark with 100,000 keys. Inegal, all three tree
algorithms performed similarly with 730-770 inserts pera®d, and 570-600 lookup
proof verifications per second. All three tree algorithmsrdB0%-90% of their time
computing cryptographic signatures, implying that additl performance tuning on
our part would yield limited gains.

We measured all three algorithms as having an update siZOdfyttes. (Section 10
considers alternative crypto parameters and ffects on these sizes.) Red-black gen-
erates the shallowest trees, causing it to have the smbdlgatip proofs, the fastest
performance, and the least RAM usage. These results carebérs€able 3.

Although red-black trees are the mosii@ent option for authenticated dictionar-
ies, they are also the most complex; their implementationiains code for 38 distinct

SEquivalently, we could multiply the size of a message by #te (in messaggsec) at which the algo-
rithm generates updates.

Swhile it might be tempting to remove version numbers entjre reduce message sizes and simplify
the system, this could enable version rollback attacks,esteave this information in the DAD.
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Proof Lookuprate RAM used

size (KB) (keygs) (MB)
Treap 1.96 7850 1077
Red-black 1.50 10269 841
Skiplist 2.63 4956 1587

Table 3: Performance acrosdfdrent tree types, inserting 100k keys, and using path-

copying to implement the repository.

Queries RAM used
(per sec) (MB)
Path Copying 10269. 841
Cache Nowhere 2.23 182
Cache Everywhere 8477. 358
Cache Median 194. 204

Table 4: Memory usage and lookup proof performance acrdke€int tree structures,
storing red-black trees containing 100k keys.

case$. Treaps and our skiplists are much simpler, having only E&saln addition
they are history independent (see Section 2.1.1), whichlmeagquired for some ap-
plications.

6.2 Comparing tree PAD repositories

Our second evaluation of tree PADs considers tlfiedint strategies for representing
the repository for theirficiency at storing the forest of trees that represents the ind
vidual snapshots. In our implementation, each Sarnalafiargrsioned node always
caches the subtree authenticator for the latest snapsitpakup proof generation
performance on that snapshot is between 4,900-10,200ppaofsecond, depending

"The authors wish to thank Stefan Kahrs at the University aitier making an open-source Haskell
implementation of red-black trees that correctly handieletibn. We ported his code to Python and then
C++.

Bandwidth Ratio
Updates Lookups
Cache everywhere, 10K keys 104 12265
Cache median, 10K keys 105 533
Cache everywhere, 100K keys 106 12907
Cache median, 100K keys 106 297

Table 5: Bandwidth ratios for each red-black tree PAD alfpons summarizing the
relative monetary costs of bandwidth and CPU time. For matiwer the provider
equilibrium ratio (190 KBs), proof size dominates the monetary costs. For smaller
ratios, computation time dominates.
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Figure 5: Steady-state lookup proof gené&tigure 6: Amortized cost per lookup for
ation performance for red-black trees. red-black tree PADs with two fferent
hash caching strategies.

on the tree used (see Section 6.1).

In Table 4 we present the RAM usage and the lookup rate foicinetype of repos-
itories when querying for historical snapshots. As expa#ctee Sarnak-Tarjan ver-
sioned trees use much less memory than path copying treehauliferent caching
strategies follow the expected asymptotic memory usagepanirmance (see Ta-
ble 1). Even though Sarnak-Tarjan versioned trees thatecaehrywhere have the
same asymptotic space and CPU costs as path copying tregs)dh less memory
because adding to the authenticator cache is much cheapetltining nodes.

To better understand the scaling behavior of tree PADs, wasteady-state mi-
crobenchmark We filled the PAD to some capacity, and then added one keyeand r
moved one key in each snapshot. Figure 5 show how the penfmenaf a red-black
tree varies for dierent keycounts in the dictionary with all four of our tre@asi-
tory strategies. As expected, the penalty for cache-nasvaed cache-median layer
increases as the dictionary gets more keys, with cacheameldigrading more slowly.

6.3 Tree PADsin a cloud-computing environment

In this section we evaluate the tradiscbetween path copying and Sarnak-Tarjan ver-
sioning with the best tinygpace tradets (cache everywhere and cache median), in a
cloud computing environment. We consider red-black treesaining 10K and 100K
keys.

In Table 5 we present our results. Surprisingly, even thocaghe median has
lookups almost 40 timeslowerthan cache everywhere, both algorithms are fast enough
that the bandwidth of the reply message yields the majofitye monetary cost of
deployment.

The average per-lookup monetary cost of a PAD algorithm ey depending on
the ratio between lookups and updates. In Figure 6 we platdkts per update across
different lookup to update ratios for thefgrent configurations of red-black tree PADs.
Cache median is 30%-60% more expensive than cache evemywhrequired 40%
less memory usage.
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BaserSS No speculation. Optimized with superseding.

BaserLW No speculation. Optimized with lightweight signatures.
Spee-SS Speculation with 2 generations. Optimized with supersgdin
SpeeLW Speculation with 2 generations. Optimized with lightweigignatures.

Accumulators | Speculation with 2 generations. Uses accumulators.
Chain Accum.| Speculation with 2 generations. Uses accumulators in adtash.

Table 6: Abbreviations used to denote thfatient tuple-based algorithms.

6.4 Treeconclusions

For maximum performance, tree-based PADs should use S3ar@n versioned nodes
with the cache-everywhere versioning strategy. In the edmre very few queries are
made for historical snapshots or where memory is low, cacbimthe median layer
may have sflicient query throughput. We also conclude that red-blagdstoominate
treaps and skiplists, running faster, having smaller I@sgtoof sizes, and using less
storage. Treaps enable other useful semantics, but them lieason to ever use a
skiplist.

7 Tuple PAD microbenchmarks

In this section, we will evaluate the various tuple PAD dasigescribed in Section 4,
including our original designs and our new RSA accumulatdersions (see Sec-
tion 4.3).

Table 6 describes the abbreviations we will use for thedknt algorithms. We
do not report results of algorithms that do not use supemngedince they have the
same performance and message sizes as the algorithms upérgeding. To put the
performance of tuple PADs in context, we also repeat ourlteefor red-black trees
using the cache-everywhere strategy.

7.1 Tuple PAD author costs

In Table 7, we present the performance of each tuple PAD ilhgorwe analyzed.
Note that due to poor insert performance, we only ran B&&efor 3851 inserts in the
growing benchmark instead of 10,000. If we extrapolateghé@formance at 10,000
inserts, we would expect 0.05 updates per second and a 290pdBtel size. Ta-
ble 7 also demonstrates thffext of tuple PAD optimizations. It shows the benefits of
speculation, increasing performance by a factor of 25 addaieg update sizes by a
factor of 50. Lightweight signatures have a similarly stzompact on performance.
Lightweight signatures are ficiently cheap relative to full public-key signatures that
crypto costs no longer completely dominant the runtime.

Our results clearly demonstrate the poor update performahtuple PAD algo-
rithms. Even if we could completely eliminate the non-co/pverheads on the author,
the fastest tuple PAD is still six times slower than a simglé-black tree PAD. The

22



Inserts Size (KB) Number

( persec) % incryptq Update Proof| Inserted

BaserSS 0.35 88%| 114.46 0.15 3851
BaserLW 2.67 13%| 156.72 0.21| 10000
SpeaSS 6.6 85% 6.44 0.30[ 10000
SpeaLW 63. 52% 3.76  0.42| 10000
Chain Accum.| 62.5 79% 0.14  1.23] 10000
Accumulators| 64.7 81% 0.14  1.30f 10000
Red-black 753. 91% 0.15 1.20{ 10000

Table 7: Comparing author performance, update sizes aruf pizes across ffer-
ent algorithms. Crypto costs include digital signaturegjifig prime representatives,
lightweight signatures, and exponentiations. Except ®ase-Supersede,” where
3851 keys were inserted, we ran each algorithm with 10,098.ke

Updates on server Server responseg Client response verification

(persec) % in cryptg generation (per sec) (per sec) % in crypto
BaserSS 4.2 — 5619 653 91
BaserLW 2.4 — 4781 594 91
SpeaSS 64.8 — 2896 323 91
SpeeLW 104.4 — 2497 314 90
Chain Accum. 0.90 99% 2419 290 89
Accumulators 0.93 99% 1991 205 91
Red-black 90009. — 10221 628 88

Table 8: Comparing server and client performance. Cryaiolgic costs include digital
signatures, finding prime representatives, lightweigimatures, and exponentiations.

network communication needed for updating the red-blag& ®#AD is similarly as
small as the very best accumulator-enhanced tuple PAD.

We implemented the hash chain optimization described iti®e4.3 and observed
the same CPU performance as signing each generation’s atatemindividually be-
cause primality computation and modular exponentiatiograjions dominate. RSA
accumulators, although being constant size, are surghjsiarge and generate lookup
proofs no smaller than red-black trees storing 10K keys. \Wexamine accumulators
further in Section 7.4.

7.2 Tuple PAD server costs

In Table 8, we present the server’s costs for thitedent PAD algorithms. On each up-
date, most algorithms do nothing other than store tuplesamatures into the repos-
itory, taking time proportional to the update size. In tlable we can see the extreme
benefits of speculation, which improves performance on #rees by reducing the
number of tuples the server must process for each snapsho€ifn) to O(+/n). Even
using speculation, accumulator algorithms process updateh slower than because
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Bandwidth Ratio
Updates Lookups
Base-SS 37. 843
BaserLW 201. 1004
SpeerSS 39. 869
SpeaLW 149. 1046
Chain Accum. 0.124 2975
Accumulators 0.128 2975
Red-black 104. 12265

Table 9: Bandwidth ratios for each algorithm summarizirgyiblative monetary costs
of bandwidth and CPU time. For ratio’s over the provider éfgtum ratio (190 KB's),
proof size dominates the monetary costs. For smaller ratmsputation time domi-
nates.

Bandwidth Ratio
Updates Lookups

Base-SS 43 925
Base-LW 85 1150
SpeeaLW 65 1239

Red-black 1226 13892

Table 10: Bandwidth ratios for each algorithm, processimg luxury-goods mac-

robenchmark, summarizing the relative monetary costs nflédth and CPU time.

For ratios over the provider equilibrium ratio (190 KB proof size dominates the
monetary costs. For smaller ratios, computation time datei

they have to compute witnesses on the server.

The time for a client to verify a lookup proof varies across dlifferent algorithms.
The cost of verifying is dominated by modular exponentiagioccurring in signature
verification and accumulator verification. Designs usingcspation take twice as long
because usually require verifying two signatures, one @ egneration.

Accumulator PADs using hash chains do not have an apprgciatédller lookup
proof. The size of a lookup proof is dominated by the 2048abitumulator value
and the 2048-bit witness, required for each generation.s@lwerheads are large
compared to the 320-bit cost of an extra signature. Hasmshaimewhat improve
lookup proof verification performance. When a hash chairseduonly one signature
need be checked. This can be seen in Table 8 in the increadedpance verifying a
hash chain accumulator lookup proof.

7.3 Tuple PADsin a cloud-computing environment

In this section, we evaluate the tradiisobetween the various tuple PAD designs in
the context of a cloud-computing environment. In Table 9 present the bandwidth
ratio for each algorithm. Whenever the ratio exceeds 19G&® the monetary cost of
transmitting the message exceeds the monetary cost of dogplie message. Every
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Figure 7: Amortized cost per lookupigure 8: Amortized cost per lookup for
for different PAD algorithms running thdifferent PAD algorithms processing the
growing benchmark on 10K keys. luxury-goods macrobenchmark.

implementation has a bandwidth ratio over 843 for lookupsaning that at least 80%
of the monetary costs of these algorithms will come from badth of the reply, not
the CPU time, disincentivizing us from porting our sloweth®yn implementations to
C++. These results also show that the majority of the monetastisanf a lookup are
the bandwidth costs involved in sending the result.

The overall monetary cost of each algorithm depends on thgve ratio between
updates and lookups. In Figure 7 we plot the costs per lookugsa diferent lookup
to update ratios for several algorithms. This plot illusdsathe tradefis between the
different algorithms. Except for the algorithms using accutoua which never win,
everyother algorithm is the cheapest at some ratio of lookups tatgs. In the case
when there are high numbers of lookups per update, updat® lmesomes less impor-
tant and the smaller response sizes of Ba¥é and Spee SS cause these algorithms
to be preferable.

7.4 Accumulator tuple PAD costs

We now take a closer look at RSA accumulators as a stand-alatity used to au-

thenticate a set of elements that are stored on an untrusteers We examine their
costs on the author, server, and clients. We compare the wihktsimply signing each

element in the set with a DSA signature, or bundling the efemimto a Merkle tree

and signing the tree root. This performance evaluationmssuhe “112 bit security
level,” requiring 224-bit hashes, 240-bit prime repreatinés, and 2048-bit modulus
operations. Note that we are comparing the costs to store acte dictionary.

In theory, the advantage of RSA accumulators compared torgjgeach element
separately is in saving the bandwidth required for an updet@wvever, if withesses
are computed on the author and sent, no bandwidth is save@4&sk witnesses
are 6 times larger than 320-bit DSA signatueesl take twice as long to compute. If
witnesses are computed on the server, then an accumuldanakes sense when the
cost of the time to compute witnesses is cheaper than thetihe time and bandwidth
required to individually sign and transmit each item, adhmtuple PAD designs. With
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Amazon and Google’s prices for bandwidth and computatiois,® times cheaper to
simply sign each tuple and avoid accumulators. Signing égalle also d&fers lookup
proof sizes 3 times smaller.

A membership proof in an RSA accumulator requires 4096 @438 bits to send
the accumulator value and 2048 bits to send the witnesssthag enough to store over
18 224-bit hashes, capable of representing a path to aninledflerkle tree of depth
17, which is sfficient to represent sets of up to 256k elements. RSA accuanslat
this big are glacially slow. Each update requires 10 minofgSPU time for author-
computed witnesses or 60 minutes for server-computed sgase

This analysis examined the tradEsof using accumulators for representing a static
authenticated set. A DAD or PADfiers additional semantics, in particular, proof of
non-membership andiicient updates. We can draw the same conclusions about the
inefficiency of accumulators when used to implement a PAD or DAInftbe results
reported earlier in this section.

7.5 Tuple conclusions

We can reach several conclusions from our results. RSA agladons are so expen-
sive, from a CPU and bandwidth perspective, that we will neseover these costs. For
PADs which are updated very frequently, red-black tree PARarly win. However,
for more stable PADs with higher query rates, the tuple-ta¥D structures, sans
the RSA accumulator, become the preferable strategy. Fddearls where a widely
varying range of lookups per update might be expected, dusdtof tuple PAD opti-
mizations, including speculation, lightweight signatyrand superseding, seems to be
an excellent strategy. For workloads where over 1000 losknjght be expected per
update, the non-speculative tuple PAD, but with lightweégjgnatures, would seem to
be the appropriate algorithm.

8 Macrobenchmark

Now that we have done many microbenchmarks of tiieint PAD designs, we can
analzye the performance and monetary costs of tiferdnt PAD algorithms when
used to store a constantly changing set of values taken frtnecca of e-commerce
prices.

Our data set represents the selling prices of high-end yugoods as fiered by a
number of vendors on the Internet. All price observationsameade between January
1, 2009 and June 30, 2009 inclusive, representing 27 digiimtes. In total, 1,272
different items were found online for the three brands, on a téta#i4 diferent web
sites. In total, there are 38,39 1fdirent observations in the data set. Our data tracked
the price of each item on each web site, forming 14,374 diskiays in the PALS

Table 11 presents the performance of th@edent algorithms on this benchmark.
This dataset is very fferent than our microbenchmarks. Most notably, it has a eoars

8Data provided by Glenn Kramer Consulting, LLC, representistual brands and products monitored
for an anonymous client, blinded and provided with cliepgsmission.
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Insert All Process All Size (KB) Lookups
Keys (sec) Updates (se¢)Update Proof| (per sec)
BaserSS | 383. 57. 708 0.18 5354
BaserLW | 131. 44, 549 0.24 4838
SpeaLW | 142. 50. 460 0.42 2952
Red-black| 1.84 1.44 149 1.59 9422

Table 11: Performance offiiérent PAD algorithms on the macrobenchmark, including
the total time on the author and server to insert six monthsicg data, the average
size of an update and lookup proof, and the lookup rate.

granularity. 38K updates are contained in only 27 snapskesasing to large update
messages. Lookup performance is as fast as we saw before.

This dataset also demonstrates that the strengths of spiecubccur when there
are many snapshots and relatively few keys are modified iroarysnapshot. In Sec-
tion 4.2 we assumed only one update per snapshot, makindehkdpoch siz&( v/n).
Here, when there are multiple updates per snapshot theddeah size isyn/K when
there are two generations alkdupdates per snapshot. For our macrobenchmark, this
would result in an epoch length of 30 snapshots, more thanuh#er of snapshots
in our dataset and no speculation would occur at all. Ratiaer artificially extending
our dataset, we used an epoch size ef §/27 for our benchmarks, to demonstrate the
advantages of speculation, which reduced the number catignoperations by 48%.
Lightweight signatures were also very beneficial, redu¢imgnumber of public-key
signatures by over 80%.

We also performed a cloud-computing monetary cost anabfs@ur algorithms
over this data set. Bandwidth ratios are reported in TablartDthe bandwidth ratios
for lookup messages are within 20% of what we observed eanligables 5 and 9
when running the growing benchmark. The update messagenidthdatio for red-
black trees is much larger than we saw in Table 5 because theage size has grown
to include all of the updated keys, while the number of experdigital signatures has
remained the same.

In Figure 8 we plot the cost per lookup. In this dataset, thgdaumber of changes
per snapshot results in large per-update monetary costhwmist be amortized over
many messages before the smaller response sizes of tuple e&dDces their overall
costs.

From this, we can conclude that the red-black tree PAD (SaTagan, cache-
everywhere) is the preferred PAD algorithm until the quertg rexceeds roughly 5000
lookups per update. Only then do the tuple PAD structuresiineanore costféective,
with the simpler “baseSS” strategy (no speculation or lightweight signaturest, fu-
perseding) ultimately winning only when the query rate ext£25K lookup&ipdate.
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9 Scalability

We expect that the server, in our system, may well be callesh wp scale to run on
large clusters and support much higher insertion and qadeg r This section considers
scalability issues for such environments and how our aflgais could be modified to
run faster in such environments.

Faster server insertion rates. Keys exist in a large key space. We can partition
that key space across a large cluster of machines, with esgelrsresponsible for
only a fraction of the key space (much as is standard praictidestributed hash table
implementations). Each server then maintains that fraatbthe PAD. Assuming
keys are uniformly distributed across the key space, easfersshould see a uniform
fraction of the load. To guarantee this uniformity, keysIddwe hashed before being
stored in the PAD.

For any tuple PAD implementation, without RSA accumulattiiss split is quite
natural. Diferent servers can be responsible foifedent key ranges, allowing for
excellent scalability. For tree PADs, each server woulddsponsible for a dierent
subtree, but coordination would be required for changeldshared top levels of the
tree.

Faster client query rates. Client queries require no mutation of state on the server.
As such, server state may be arbitrarily replicated to sttgamer client query rates.
This would require inbound mutation operations from austtorbe distributed to each
replica responsible for any given key.

Lots of snapshots. While some measure of coordination is required, as above, to
handle the most current version of a PAD, older versions tatécs In a large server
cluster, older snapshots can be replicated onto dedicadetines. Any given range of
keys from any given snapshot can be stored on multipfegreint servers, allowing for
excellent scalability both in terms of storage capacity sungborted client query rates.

Faster authors. Presently, we assume that the “author” is running on a siogpe-
puter, but we could imagine a large number of machines, stdnie author’s crypto
key material, concurrently authoring a PAD. Assuming theveseis ready to support
the higher insertion rate, as above, the challenge is todimate all the author nodes.
For modest scalability, a single-threaded author can otmthe tree or tuple layout,
delegating expensive cryptographic computations to atbdes in its cluster. If DSA
signatures are used, latency can be further reduced bydavithor nodes partially
precompute signatures [25].

For broader scaling, the author nodes could follow a paritig strategy, similar to
that described for the server. Again, this partitioning uste| natural with tuple PADs
and will require coordination of the higher layers in theetfer tree PADs.

10 Selecting and tuning theright algorithm
Our space and time benchmarks were collected on a specificineawith a specific

set of cryptographic parameters, including 2048-bit DSfhatures, and 28-byte keys,
values, and hashes. Obviously, our measurements wouldfleeedit had we used
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different cryptographic algorithms, choseffelient cryptographic parameterstfdr-
ent key and value sizes, or if cryptographic operations vetieaper (e.g., through
cryptographic accelerators). Without needing to re-runtlmenchmark runs, we can
extrapolate our results to cover a variety of scenarios:

If bandwidth gets cheaper faster than CPU get cheaper, then provider equilibrium
ratios will increase. The monetary costs of an algorithmesetbandwidth ratio is less
than the old provider equilibrium ratio will change muchdeakan algorithms whose
bandwidth ratio is much higher. If, for example, bandwidth tgn times cheaper, then
from Table 9, we could conclude that accumulators and radkbirees, which have
bandwidth-intensive lookups, would be disproportionat#fected. New prices for
lookups and updates could be computed by adapting the ngnmb&ables 7 and 8 and
red-black trees would be cheaper than tuple-pads at ratits 200 lookup per update,
rather than 15.

If CPU gets cheaper faster than bandwidth get cheaper, a similar analysis applies.
In this case, the provider equilibrium ratios will decreakables 9 and 5 shows which
algorithms are CPU-intensive, with low bandwidth ratibsttwould be disproportion-
ately dfected. If, for example, a cloud computing provider sold CBtldne tenth the
cost of Amazon while charging the same for bandwidth, a tes® Paching on the
median layer would become more appealing compared the eaengwhere strategy,
since the cost of recomputing the hashes becomes compdyatihveaper, allowing us
to use less RAM (See Section 6.2 and Table 4). The bandwidtis @muld be identi-
cal.

If cryptography wasten timescheaper, whether from hardware cryptographic accel-
erators, faster elliptic curve signature algorithms, or ater cause, crypto overheads
would drop from their current 50%—-90% fraction of CPU costd®%—50%, resulting
in an overall increase in performance of th&elient algorithms by 80%-420%. The
now-lower crypto overheads wouldfer the opportunity for additional performance
benefits by rewriting Python code intor&.

If eliptic curve signatureswereused, nothing would change for the server. ECDSA
signatures of the same security strength as regular DSAsiges are exactly the same
size, so the bandwidth costs would not change. They'rerfasteompute, but that
expense is undertaken by the author, not the server.

If smaller keyswere stored in the PAD, which could be stored directly rather than
first being hashed, lookup proofs in tree-based PADs would haomparative advan-
tage, as their lookup proofs include a key and two hashesafdr rode of th€©(logn)
expected nodes in the path from the root. In the case of a sittkel, where keys could
easily be encoded as 8 byte strings, instead of the 28-bgtekahat were used in our
benchmarking, we would expect red-black tree lookup prémfirop from 1.2 KB to
0.95 KB, while tuple PADs would decrease by only 40 bytes ipeculation is used
and 40 C bytes if speculating witlC generations.

If morethan 10K keys are stored in the PAD, tuple PAD updates would become
more expensive in CPU time and bandwidth, following ®@) or O(C {n) big-O

expectation. Tree PAD updates would require almost the sarlg time, because
the O(1) signature computation dominates Bogn) tree update operations. Red-
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black tree PAD lookup proofs would grow by about 340 addgidvytes each time the
keycountincreases by an order of magnitude, 1.53 KB for 1K&}§, and 1.87 KB for
1M keys.

11 Conclusion

Our analysis considered two venyfigirent structures for implementing persistent au-
thenticated dictionaries: those based on Merkle treedifita structures and those based
on independently signed “tuples.” We implemented Merkézérbased on skiplists,
treaps, and red-black trees, along with foufatient strategies for how to share related
state across fferent versions of the trees. We implemented tuples, basedmprior
designs, including a variety of optimizations that we pragah and adding a new de-
sign and implementation with RSA accumulators to improeealymptotic ficiency

of our tuple design.

These algorithms make a variety offérent tradefis between computation, band-
width, and storage. Our strategy of converting all of thesgsuinto monetary costs,
based on commodity pricing from Amazon and Googler@d useful insight into
which algorithms are preferable under which conditions.sMmtably, we conclude
that the fixed costs of RSA accumulators dwarf their asynipbanefits, making them
unsuitable for production use. We conclude that red-blae&s; implemented with
Sarnak and Tarjan’s versioning strategy, and caching sal#uthenticators at every
node for every version, is the optimal strategy for PADs egueing frequent updates.
However, when the query rate grows much larger than the epdée, our tuple PAD
strategies, with our full suite of optimizations, seem tdfe preferable strategy.

We have a number of directions to consider in future work. Vilepursue algo-
rithmic extensions to PADs to better support multiple, nallftuntrusting authors. We
will also examine extensions to integrate privacy feattwgsther with PADs.

Given our flexible software implementation of so manffetient PAD variations,
we intend to pursue applications of our data structuresriwere concrete problems,
such as building robust file storage above potentially wtémistorage like Amazon’s
S3 service. We also intend to release our code under a uaggkh-source license.
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