
Abstract

Authenticated dictionaries are a widely discussed paradigm to enable verifi-
able integrity for data storage on untrusted servers, such as today’s widely used
“cloud computing” resources, allowing a server to provide a“proof,” typically in
the form of a slice through a cryptographic data structure, that the results of any
given query are the correct answer, including that the absence of a query result is
correct. Persistent authenticated dictionaries (PADs) further allow queries against
older versions of the structure. This research presents implementations of a variety
of different PAD algorithms, some based on Merkle tree-style data structures and
others based on individually signed “tuple” statements (with and without RSA ac-
cumulators). We present system throughput benchmarks, presenting costs in terms
of time, storage, and bandwidth as well as considering how much money would
be required given standard cloud computing costs. We conclude that Merkle tree
PADs are preferable in cases with frequent updates, while tuple-based PADs are
preferable with higher query rates. For Merkle tree PADs, red-black trees outper-
form treaps and skiplists. Applying Sarnak-Tarjan’s versioned node strategy, with
a cache of old hashes at every node, to red-black trees yieldsthe fastest Merkle
tree PAD implementation, notably using half the memory of the more commonly
used applicative path copying strategy. For tuple PADs, although we designed and
implemented an algorithm using RSA accumulators that offers constant update
size, constant storage per update, constant proof size, andsublinear computation
per update, we found that RSA accumulators are so expensive that they are never
worthwhile. We find that other optimizations in the literature for tuple PADs are
more cost-effective.
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1 Introduction

The recent growth of cloud computing and software-as-a-service offers an attractive
option for storing data “in the cloud” rather than locally, for example, replicating
data to improve fault tolerance. Of course, the cloud computing provider may well
be untrusted. In situations where one author wants to use cloud services to publish
data to multiple consumers, or to store data remotely, data integrity is a vital concern.
These situations include outsourced databases [37] and untrusted or distributed filesys-
tems [24, 20, 31, 12]. Similar problems of untrusted remote storage occur in commer-
cial remote backup services, p2p systems, smartcard storage [13, 34], and certificate
revocation lists [26].

Many of these designs can be implemented using thedynamic authenticated dictio-
naryparadigm (DAD) [26, 19]. A DAD is a key/value dictionary that permits updates.
Updates are signed by trustedauthors. The dictionary is stored on untrustedservers
and queried byclients. Query responses are authenticated by the author’s digitalsig-
nature.

An authenticated dictionary can be extended to be aPADorpersistent authenticated
dictionary[2, 11], by allowing queries to older versions as well as the current version,
such as in revision control systems [36]. Explicit versioning, plus an external channel to
alert clients to the latest version ID, are essential to defeating version rollback attacks.

For this research, we implemented 21 different PAD algorithms, including prior de-
signs based on Merkle trees [2] and our prior work with “tuple-based” PADs [11]. RSA
accumulators [7, 10] have also been proposed as a primitive for building authenticated
dictionaries [30]. In this paper we designed and implemented such a PAD offering
constant update size, constant storage per update, constant proof size, and sublinear
computation per update, all by using accumulator techniques. For each algorithm we
measured the time, space and communication overheads, determining real-world per-
formance that includes the constant factors of digital signature generation, modular
exponentiation, primality testing, serialization, and soforth.

In earlier work, we presented a traditional complexity analysis of these algorithms [11].
Because our current work measures real implementations, wecan report performance
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in terms of milliseconds, bytes, and dollars, leading to some surprising results. For
example, in comparing PADs using RSA accumulators with PADsusing other cryp-
tographic data structures built from hashes and traditional digital signatures, we con-
cluded that RSA accumulators areneverthe preferable algorithm, despite their superior
asymptotic complexity. Results like this would be difficult or impossible to prove ab-
sent running code.

Our collection of PAD algorithms make different tradeoffs of CPU, bandwidth, and
storage requirements. The ideal algorithm for any given workload will thus depend on
the relative costs of these resources. Rather than guess at these tradeoffs, we instead
normalize them using contemporary costs, in U.S. Dollars, charged by Google and
Amazon for bandwidth, CPU time, and storage on their EC2 and AppEngine services,
respectively. If we assume that Google and Amazon are offering these resources at their
marginal cost, i.e., that their rates charged for bandwidth, CPU time, and storage are
close to the actual costs to any provider delivering large quantities of these resources,
then our evaluation strategy should generalize to other vendors as well. Furthermore,
our measurements can be easily extrapolated to allow a system designer to consider a
variety of “what if” scenarios (e.g., what if crypto accelerators allowed a huge speedup
for crypto algorithms) and know which PAD algorithms are likely to be the fastest or
cheapest under their system constraints.

In Section 2, we introduce the properties that a persistent authenticated dictionary
possesses and we summarize the two classes of PAD algorithmswe investigate. In Sec-
tion 3, we describe PAD algorithms based on search trees. In Section 4, we describe
our prior PAD algorithms based on signed tuples and introduce our new RSA accu-
mulator variation. In Section 5, we describe our PAD implementations and evaluation
methodology. Section 6 presents benchmark results for our tree PAD implementations.
Section 7 presents benchmark results for our tuple-based PAD implementations, in-
cluding the RSA accumulator variation. Section 8 presents realistic benchmark results
against real-world traces. Section 9 discusses issues relating to scaling these systems
up to larger compute clusters. Section 10 discusses how to extrapolate our benchmark
results to different scenarios. Finally, conclusions and future work are discussed in
Section 11.

2 Background

PAD systems divide the world into three roles. Trusted authors updatethe dictionary
by inserting or removing key-value pairs. At any time, asnapshotof the contents of
the dictionary can be taken, resulting in a newversionof the PAD. The author then
sends anupdate blobto the server containing data and authentication information that
is stored in arepository, used by the server to respond to lookup requests from clients.
Clients send lookup requests containing a lookup key to the server and receive alookup
proofof the membership of the key and its corresponding value, or non-membership of
that key in the dictionary, signed by the author. What makes aPAD “tamper-evident” or
“authenticated” is that a malicious server can neither lie to clients about the existence
or non-existence of the stored key, nor lie about the value stored for a key without the
cooperation of the author (or without breaking the underlying cryptosystem).
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In an outsourced storage model, the authors and client may well be the same entity.
In any PAD design, we assume a single author who produces digital signatures and
possibly multiple clients who can verify them. The server isuntrusted and clients have
limited state with which to verify the server’s output. Authors are assumed to only
know about the latest snapshot, while the server is assumed to store all snapshots.

In the next two subsections, we consider two main structuresfor PADs: those based
on Merkle trees and those based on individually signing records.

2.1 Tree-based PADs

Given a search tree where each node contains a key, value and two child pointers, we
can build an authenticated dictionary by building a Merkle tree [21]. If the root hash of
such a tree is signed by the author, a server can prove membership of a key in such a tree
by showing a path in the search tree to the key. A server can prove non-membership by
showing a path to the unique location in the tree where the keywould have been stored.

When implementing a PAD, the author only needs to manage one search tree, that
of the latest snapshot. On the server, each snapshot is a logically distinct Merkle tree
with a different signed root hash. Rather than storing each snapshot asa distinct tree,
we can exploit the similarity between trees across snapshots to implement a more
space-efficient repository on the server. The design of the repositorymay affect the
performance of the server or its memory usage, but has no effect on the size of an
update or lookup proof.

There are several Merkle tree-based approaches for implementing the repository. In
Section 3.3, we describe four different implementations and in Section 6.2, we compare
their performance. We could use any balanced search tree that supportsO(1) expected
(not amortized) node mutations per update, such as AVL [1] orred-black trees [17].
The balanced tree algorithm has an effect on the sizes of an updates and lookup proofs.
We like treaps [4] for their set-uniqueness properties but we also implement skiplists
(see Section 3.1.2) and red-black trees (see Section 3.1.3).

Combining the choice of repository designs and the choice ofbalanced tree algo-
rithms, we have 12 different PAD implementations that we can compare. In Section 3.1
we describe our implementation of all three algorithms and in Section 6.1 we compare
their performances.

2.1.1 Set-unique representations

Treap and skiplist designs are normally probabilistic, in that the ultimate layout of
the data structure depends upon random coin flips. We can determinize these data-
structures by using a hash function over the key stored in a node. Our deterministic
treaps and skiplists become “set-unique,” meaning that allauthenticated dictionaries
with the same contents will have identical tree structures.If we build Merkle trees
from these treaps or skiplists, then any two dictionaries with identical contents will
have identical root hashes. Set-uniqueness [3, 27] also makes these data structures
history independent [23]. The root hash that authenticatessuch a treap or skiplist will
leak no information about the insertion order of the keys or of the past contents. Such
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semantics may be valuable, for example, with electronic vote storage or with zero-
knowledge proofs.

History-independence is also useful if a dictionary is usedto store or synchronize
replicated state in a distributed system. Updates may arrive to replicas out-of-order,
perhaps through multicast or gossip protocols. Also, by using a set-unique authenti-
cated data structure, we can efficiently determine if two replicas are inconsistent.

History independence makes it easier to recover from backups or create replicas. If
a host tries to recover the dictionary contents from a backupor another replica, history
independence assures that the recovered dictionary has thesame root hash. Were a
non-set-unique data structure, such as red-black tree, used the different insertion order
between the original dictionary and that used when recovering would likely lead to
different root hashes even though the recovered dictionary had the same contents.

2.2 Tuple-based PADs

Unlike authenticated dictionaries based around search trees, tuple-based authenticated
dictionaries and persistent authenticated dictionaries offer constantproof size, regard-
less of the number of keys in the dictionary. At their core, they are based around signed
statements of the form:

“Key k j has value cj , and there are no keys in the dictionary in the interval(k j , k j+1).”
These statements are represented astuples, ([k j , k j+1), c j), and can be used to de-

sign an authenticated dictionary. A PAD can be designed by extending these tuples to
additionally include version numbers. In Section 4 we describe such a PAD, including
optimizations to reduce signature overhead by using speculation, and reduce storage
on the server by including version number ranges in tuples; we also propose a new
optimization where we use RSA accumulators [7] to reduce communication costs. In
total, we implemented 9 variations on tuple PADs and in Section 7 we analyze their
performance.

3 Tree PADs

In this section we describe tree-based PADs. Every tree-based PAD is a Merkle tree,
but we must make two orthogonal design choices: the tree balancing operations, and
how the repository is stored. The repository logically consists of a forest of trees,
one for each snapshot, but we wish to share storage across trees to save space. Tree-
based PADs based around path copying red-black trees and skiplists were originally
designed by Anagnostopoulos et al. [2]. Extensions to support Sarnak-Tarjan trees
were presented our prior work [11] which we briefly summarize.

In a Merkle tree, each nodex is assigned asubtree authenticator x.H with the
following recurrence:x.H = H(x.key,H(x.val), x.left.H, x.right.H) whereH is a cryp-
tographic hash function.

A lookup proof, seen in Figure 3 and returned on a lookup request, is a proof that a
keykq is in the tree. It consists of a pruned tree containing the search path tokq. Subtree
authenticators for the sibling nodes on the search path are included in the proof as well
as subtree authenticators of the children of the node containingkq, if kq is found. From
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this pruned tree, the root authenticator is reconstructed and compared to the trusted
root authenticator signed by the author. We can prove that a key is not in the tree by
showing a path to the unique leaf location where that key would otherwise be stored.

For a balanced search tree, a lookup proof has sizeO(logn), and can be generated
in O(logn) time.

Conventionally, the subtree authenticators for each node in the tree will be precom-
puted and stored in the node, but we note that these values canbe recomputed whenever
needed, on the fly, from the keys and values in the subtree, offering a variety of time,
space, and design tradeoffs. As such, keeping the hashes around can be thought of as a
form of caching.

Without a cache, generating a lookup proof requiresO(n) time for recomputing
subtree authenticators of elided subtrees.

3.1 Different tree-balancing algorithms

3.1.1 Treap

Treaps [4] are a randomized search tree that can implement a dictionary with aO(logn)
expected cost of an insert, delete, or lookup. Treaps support efficient set union, differ-
ence, and intersection operations [8]. Each node in a treap is given a key, value, priority,
and left and right child pointers. Nodes in a treap obey the standard search-key order;
a node’s key always compares greater than all of the keys in its left subtree and less
than all of the keys in its right subtree. In addition, each node in a treap obeys the heap
property on its priorities; a node’s priority is always lessthan the priorities of its de-
scendants. Operations that mutate the tree will perform rotations to preserve the heap
property on the priorities. When the priorities are assigned at random, the resulting
tree will be probabilistically balanced. Furthermore, given an assignment of priori-
ties to nodes, a treap on a given set is unique.1 Deterministic treapscan be created
by assigning priorities using a cryptographic digest of thekey, creating a set-unique
representation [4].

Assuming that the cryptographic digest is a random oracle, in expectation, each
insert and delete only mutatesO(1) nodes, consisting of one node having a child pointer
modified andO(1) rotations. The expected path length to a key in the treap isO(logn).
The worst case isO(n), but this is unlikely to ever occur.

3.1.2 Skiplists

Papamanthou et. al. [2] described PADs based on path copyingred-black trees and
skiplists. In this section, we describe skiplists and how they can represent an authenti-
cated dictionary. A skiplist [32] is a data structure offering logarithmic lookups, inserts,
and deletes. A classic skiplist is a singly-linked list except that nodes may have several
outgoing links, stored in a variable-sized array, which canskip over a large number of
list nodes.

1Proof sketch: If all priorities are unique for a given set of keys, then there exists one unique minimum-
priority node, which becomes the root. This uniquely divides the set of keys in the treap into two sets, those
less than and greater than that node’s key, stored in the leftand right subtrees, respectively. By induction, we
can assume that the subtrees are also unique.
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An alternative formulation of skiplists exists, shown in Figure 1, where each variable-
sized array is represented as a “tower” of nodes where each node has only two outgoing
links. This forms a representation of a skiplist resemblinga set of parallel sorted linked
lists. Each key in the skiplist is assigned a maximum levelLmax when it is inserted, and
it will be placed in the level-Lmax linked list and all lower-level linked lists.

Maximum levels are assigned using an exponential distribution. The level-0 list
contains every list node. The level-ith list contains one in every 2i list nodes on average.
In this example, keys{3, 6, 9, 15} are at level 0, key{8} is at level 1 and keys{5, 11} are
at level 3. If the level of a key is chosen deterministically from the key, the skiplist over
a set of keys will be set-unique. Searching a skiplist involves starting in the upper left
and “skipping” many nodes by using the higher level links. Skiplists offer an expected
O(logn) update time and lookup time. Just as with a treap, the worst-case lookup and
update time isO(n).

Our applicative tree-representation of skiplists is basedon the tower-style skiplist
authentication trees as used in Goodrich et. al. [14]. We improve on their constructions
in several ways, described below.

During lookups, not every edge in a skiplist is used. Extra edges, represented in
grey in Figure 1, are only needed for performing updates. We observe that completely
omitting the extra edges lets us store a skiplist as if it werean ordinary binary tree; it
can then be made persistent using any technique applicable to a binary tree. To this
end, we have redesigned our skiplists to not require these extra edges. In Figure 2 we
present our final representation of this skiplist.

In addition to a new formulation of skiplists as binary trees, our lookup proofs
improve on prior work in authenticated skiplists. Lookup proofs consist of a path from
the root to node containing a lookup key. A lookup proof showing non-membership
must prove that the interval between the two neighboring keys where the lookup key
would otherwise belong does not contain the lookup key.

In the original formulation of authenticated skiplists, non-membership is proved by
including the right siblings of each node in the path from theroot to the lookup key. For
example, to prove that the key 7 is not in the skiplist in Figure 2, the server includes the
bold-faced edges along with the (−∞,∞) edge atL3 and the (5, 11) edge atL2. When
proving non-membership of a lookup key that occurs after a level-0 node without a
right sibling, the proof of non-membership uses the right successor key stored in that
node.

We can improve on this construction. Observe that in a skiplist, the successor of
a level-0 node without a right sibling is always the key stored in the right sibling of
the first ancestor of that node with a right sibling. If the lookup proof already contains
the right sibling of every node in the lookup path, then the successor node is already
included in the proof, removing the need for any nodes to explicitly store the keys of
their successors. By removing the non-tree-like behavior of storing successor keys, this
construction simplifies the design and implementation of update operations.

We can further optimize the proof when the author is trusted to correctly build the
skiplist. Instead of including every right sibling in the lookup proof, we only need to
includeoneright sibling. If we want to show that a keyK is not in the skiplist, we do a
search forK. If we find a levelL0 nodeN with keyk1 < K and a right child containing
k2 > K, then by including bothN and its right child, we can prove thatK is not in the
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Figure 1: Skiplist representation. Dashed
arrows represent redundant edges that are
omitted in our implementation.

Figure 2: Skiplist query for “7.” High-
lighted nodes will be included in the re-
sult proof to demonstrate that “7” is absent
from the result.

skiplist. If N does not have a right child, then the successor key tok1 is stored in the
right sibling of the first ancestor ofN that has a right sibling, if that right sibling has
key k2 > K, thenK is not in the dictionary. In our construction, only this one right
sibling in the lookup path needs to be included in the proof whereas before, every right
sibling was included. For example, in Figure 2, the levelL0 node 6’s first ancestor with
a right sibling is the levelL1 node 5, whose right sibling contains an 8. This is 6’s
successor in the skiplist. The highlighted edges and nodes would suffice to prove that
the value 7 is absent from the data structure. This optimization makes our construction
of a skiplist lookup proof include approximately half of thenumber of nodes as prior
constructions.

3.1.3 Red-black trees

Authenticated dictionaries can also be built with red-black trees [2], offeringO(1) ex-
pected node mutations,O(logn) worst-case update costs, andO(logn) worst case path
length. Red-black trees offer a tighter bound than skiplists or treaps, with a logarithmic
worst-case bound, not just a logarithmic expected-case bound2. We omit a detailed
description of red-black trees here, but we note that red-black trees are not history
independent. They should only be used when such semantics are not required.

3.2 Persistent binary search trees

Persistent search tree data structures extend ordinary search tree data structures to sup-
port lookups in past snapshots or versions. Persistent datastructures have been exten-
sively studied [9, 18], particularly with respect to functional programming [29, 5]. In
this section we summarize the algorithms proposed by Sarnakand Tarjan [35], who
considered approaches for persistent red-black search trees. Their techniques apply
equally well to treaps, red-black trees, or our version of a skiplist, as described above.

Logically, a persistent dictionary built with search treesis simply a forest of trees,
i.e., a separate tree for each snapshot. The root of each of these trees is stored in a

2For simplicity in reporting results in our evaluation, we will gloss over the difference between expected
and worst-case bounds.
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Figure 3: Graphical notation for a lookup proof forM or proving the non-membership
of N. Circles denote the roots of elided subtrees whose children, grayed out, need not
be included.

snapshot array, indexed by snapshot version. Historical snapshots are frozen and im-
mutable. The most recent, orcurrent snapshot can ostensibly be updated in place.
Whenever a snapshot is taken, a new root is added to the snapshot array and that snap-
shot is thereafter immutable.

Sarnak and Tarjan proposed three strategies for representing the logical forest of
trees: copy everything, path copying, andversioned nodes. They range fromO(n)
space toO(1) space per update. These different physical representations store the same
logical forest. The simplest,copy everything, copies the entire tree on every snapshot
and costsO(n) storage for a snapshot containingn keys.

Path copying uses a standard applicative tree, avoiding the redundant storage of sub-
trees that are identical across snapshots. Nodes in a path-copying tree are immutable.
Where the normal, mutating treap, red-black, or skiplist algorithm would modify a
node’s children pointers, an applicative tree instead makes a modified clone of the
node with the new children pointers. The parent node will also be cloned, with the
clone pointing at the new child. This propagates up to the root, creating a new root.
For any of red-black trees, treaps, or skiplists, each update will createO(1) new nodes
andO(logn) cloned nodes in expectation. When a snapshot is taken afterevery update,
skiplists and treaps will useO(logn) expected storage per update while red-black trees
will have a worst-case bound ofO(logn) storage per update.

Versioned nodes are Sarnak and Tarjan’s final technique for implementing partially
persistent search trees and can represent the logical forest with O(1) expected amortized
storage per update. We will first explain how versioned node trees work and then, in
Section 3, we will show how to build these techniques into search trees with Merkle
hashes.

Rather than allocating new nodes, as with path copying, versioned nodes may con-
tain pointers to older children as well as the current children. While we could have
an infinite set of old children pointers, versioned nodes only track two sets of children
(archivedandcurrent) and atimestamp T. The archived pointers archive one prior
version, withT used to indicate the snapshot time at which the update occurred so
that a tree traverser knows whether to use the archived or current children pointers. A
versioned node cannot have its children updated twice. If a nodex’s children need to
be updated a second time, it will be cloned, as in path copying. The clone’s children
will be set to the new children.x’s parent must also be updated to point to the new
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Figure 4: Four snapshots in a Sarnak-Tarjan versioned-nodetree, starting with an
empty tree, then insertingR, then insertingS, then deletingS. We show the archived
children to the left of a node and the current children to the right. Note thatR is modi-
fied in-place for snapshot 2, but cloned for snapshot 3.

clone, which may recursively cause it to be cloned as well if its archived pointers were
already in use. In Figure 4 we present an example of a versioned node tree.

Each update to a treap or red-black tree requires an expectedO(1) rotations, each
of which requires updating the children of 2 versioned nodes, requiring a total ofO(1)
expected amortized storage per update. To support multipleupdates within a single
snapshot, we include a last-modified version number in each versioned node. If the
children pointers of a node are updated several times withinthe same snapshot, we
may update them in place. As with path copying trees, saving acopy of the root node
in the snapshot array is sufficient to find the data for subsequent queries.

3.3 Making trees persistent and authenticated

Although Sarnak-Tarjan trees are a very concise way for a server to store a PAD’s snap-
shots, the server must be able to generate lookup proofs on the demand of clients. Gen-
erating responses to lookup requests requires having subtree authenticators for pruned
subtrees that are not included in the proof. When using Sarnak-Tarjan versioned-node
trees, the subtree authenticator of a node will depend on thesnapshot version being
used. Consequently, a versioned node cannot simply keep onehash of its children.

Subtree authenticators can always be recomputed from the tree structure by visiting
every node in the subtree. This requires no additional storage but this cacheless strat-
egy is inefficient, withO(n) lookup proof generation times. Our prior work presented
several caching strategies to either store or dynamically recalculate subtree authentica-
tors [11]. The tradeoffs of different caching strategies are shown in Table 1.

Each versioned node can cache the changing authenticator for every version in
a versioned referencewhich can be stored as an append-only resizable vector of pairs
containing version number transition pointsvi and subtree authenticator valuesr i , ((v1, r1),
(v2, r2), . . . (vk, rk))). The cache is undefined forv < v1. The cached value isr1 for
v1 ≤ v < v2, r2 for v2 ≤ v < v3, and so forth. The cached value isrk for versions
≥ vk through the current version.r i = �means that the cache is invalid and the subtree
authenticator must be recomputed by visiting the node’s children. Lookups by version
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Caching strategies Storage Lookup proof
(per update) (time)

No cache O(1) O(n)
Cache everywhere O(logn) O(logn)
Median layer O(1) O(

√
n)

Table 1: Caching strategies for subtree authenticators in aSarnak-Tarjan tree.

number use binary search over the vector inO(logk) time.
In thecache everythingstrategy, whenever that node’s subtree authenticator changes

in a new snapshot and results in logarithmic storage per update and logarithmic time to
generate a lookup proof. This offers the same big-O storage as path copying but with
lower constant factors because updating a cache is much cheaper than cloning a node.

In thecache medianstrategy, the repository only caches authenticators on theme-
dian layer of the tree, i.e., a tree containingn nodes will have depth log2(n), so the
server caches on all nodes at depthlog2 n

2 . Compared to having no cache at all, only
constant storage is expected per update, while the time to generate a lookup proof de-
creases fromO(n) to O(

√
n).

3.4 Implementation details

We implemented treaps [4], red-black trees [17], and skiplists [32]. For the server’s
repository of persistent trees, we implement path copying and the three variations of
storing/recomputing subtree authenticators on Sarnak-Tarjan versioned-node trees as
discussed above, giving us 12 different tree-based PAD variations to benchmark. We
present performance results from native C++ implementations.

Because we are supporting different types of applicative representations, our red-
black, skiplist and treap implementations areonly allowed to “mutate” the children of
a node through an abstract interface which, given a node and apair of new left and
right children, returns a node representing the result of applying those changes. The
result depends on the underlying repository implementation. With path copying, it will
always be a clone. With Sarnak-Tarjan versioned trees, it may or may not be a clone.
This requires that the implementations of these algorithmsbebottom-upandmutation-
free. In addition, because nodes store keys and values, we must preserve node identity
during rotations and other operations, reusing nodes that already store the needed key
and value, updating their children through our abstract interface, rather than needlessly
cloning those nodes.

4 Tuple-based PADs

In prior work, we presented a new design for implementing PADs with a series of
individually signed messages, calledtuple-based PADs[11]. We briefly introduce our
design here, both at its most basic and with all of our optimizations. In Section 4.3, we
extend tuple PAD designs to use RSA accumulators, reducing certain operations from
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O(logn) to O(1) time. Our implementation is described in Section 4.4 andbenchmarks
appear in Sections 7 and 8.

4.1 Basic tuple PADs

Tuple PADs, at their most basic essence, are a list of signed statements made by the
author for every version of the dictionary. For each key/value pair (ki , ci), at every
version numbervn the tuple PAD will contain a signed statement, by the author of the
form (vn, [ki , ki+1), ci) which denotes that for thenth version, the keyki has valueci and
that there is no other key in the dictionary whose value is greater thanki and less than
ki+1. Two additional special-case entries deal with the key-range less than the smallest
key and the key-range greater than the largest key. Keys could be integers, strings, hash
values, or any type that admits a total ordering.

For a dictionary withmversions, each of which hasn key/value pairs, this requires
the author to generaten×mdigital signatures, which is clearly quite expensive, but the
benefits for the server and client are clear. The client can query the server for a given
key k at a particular versionv and the server just needs to return the proper signed
tuple. If the requested key doesn’t exist, the server can return the tuple whose key
interval covers the requested key to prove its absence.

Storing tuples with a persistent search tree. Our next challenge is how to store
tuples and signatures so that they may be easily found duringlookups. We need an
auxiliary data structure that can store the varying set of tuples representing each snap-
shot, and for any given snapshot version, we need to be able tofind the tuple containing
a search key. This can be easily done with a persistent searchtree that supports pre-
decessor queries, such as theO(1) persistent search tree data structure described in
Section 3.2.

Each snapshot in the PAD has a corresponding snapshot in the auxiliary persistent
search tree for storing the tuples representing that snapshot. Whenever an update oc-
curs, the author will indicate which tuples arenew(i.e., their key interval or value was
not in the prior snapshot), and which tuples are to bedeleted(i.e., their key interval
or value is not in the new snapshot). The remaining tuples arerefreshed. At most two
tuples will be deleted and one tuple will be new. The author transmits signatures on
every new or refreshed tuple.

This data-structure requiresO(1) storage per update for managing the tuples rep-
resenting the PAD and can find the matching tuple and signature for any key in any
snapshot in logarithmic time. Unfortunately, the additional costs ofO(n) signatures for
every snapshot must also be included in the communication and storage costs. Reduc-
ing these costs is the challenge in building tuple-based PADs.

4.2 Fast tuple PADs

We wished to reduce the author’s costs, noting that between any two versions, most of
the key/value pairs will not change. In our prior work, we considereda variety of differ-
ent optimizations and structures which we have now implemented in our benchmarks.
We summarize that work here.
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Superseding. Let’s say the valueci of a keyki has remained constant for several ver-
sions and the subsequent keyki+1 has likewise been unchanged. When the author signs
the tuple for the most current version, the author can include arangeof past version
numbers over which the statement is also valid. This allows the server to discard older
signatures that refer to the same key, reducing server storage space toO(1) per update.
The author must still sign and sendO(n) signatures per snapshot to the server.

Our implementation further optimizes this by adoptinglightweight signatures[22].
Rather than requiring the author to sign the same tuple, again and again, the author first
computes an iterated hashH(H(H(....H(R)))) for some random numberR and signs
that along with the initial tuple entry. Subsequentrefreshesof the tuple need only
reveal successive preimages of the hash function, saving the author from the expense
of recomputing so many digital signatures.

Speculation. The author cannot predict the future, of course, but it’s a safe assumption
that most keys aren’t changing. We introduced a structure reminiscent of a generational
copying garbage collector, where there are now two separatesets of signed tuples.
The young generationG0 contains only keys that are recently modified, while the old
generationG1 contains all other keys. Once every epoch, the author generates a new
set of tuples inG1 and an emptyG0.

The tuples inG1 contain speculative signatures that cover the range from the time
they are inserted until the (future) end of the current epoch. Inserts within a given
epoch then do not require any updates to the signatures inG1. Of course, a client
making any given query will require results from bothG0 andG1, where the young
generation describes whether anything relevant has changed relative to what’s stored in
the old generation.

If we assume a snapshot is taken after every update, then withan epoch length of
E, G0 will have at mostE + 1 tuples. The author must sign all of the tuples inG0 each
time a snapshot is taken, and, once everyE1 snapshots, the author must sign alln+ 1
tuples inG1. The amortized number of signatures per update is thusO(E1+n/E1), with
a minimum whenE1 =

√
n. Speculation can be generalized to multiple generations.

With C generations, the author must sign and communicateO(C C
√

n) signatures per
update instead ofO(n) if a snapshot is taken after every update.

If DSA signatures are used, latency can be reduced at the start of an epoch by
partially precomputing signatures [25]. In addition, speculation can also be combined
with superseding and lightweight signatures to reduce the storage on the server, toO(C)
per update.

4.3 Tuple PADs based on RSA accumulators

RSA accumulators [7] use RSA exponentiation to generate a constant-sized integer that
can be used to authenticate set membership. The RSA accumulator is then signed using
a traditional digital signature. The server proves that an element is in the set by sending
item in question, the accumulator as signed by the author, the author’s signature, and a
constant-sizedwitness.

Dynamic accumulators [10] permit efficient incremental update of accumulators
without requiring that they be regenerated from scratch. Accumulators have been
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widely proposed for use in systems such as our (see, e.g., Goodrich et al. [15]). We
now present a design that uses a signed accumulator as a concise summary of the set
of tuples representing a snapshot, thus allowing for constant-sized lookup proofs and
update messages.

Background.
Consider storing a set ofe r-bit prime numbersp1 . . . pe. The accumulator storing

these keys works as follows: The author selects ans-bit modulusN = pqand a gener-
atorg with s > 3r. p andq are strong primes, andg is a quadratic residue modN. p
andq are kept secret. The RSA accumulatorA over this set isgp1...pe. The accumula-
tor A is then signed. To prove that a keyki is in the set, the server supplies a witness
Wi = gp1p2...pi−1pi+1...pe. (To prevent keys from having a mathematical relationship with
one other, prime numbers must be used to represent the set members.)

The author, with its knowledge of the factorization ofN, may insert or remove
keys from the accumulator withO(1) exponentiations per update. Witnesses can be
computed by an untrusted server without the knowledge of anysecrets. The witness for
any single key can be computed withO(e) exponentiations and the set of all witnesses
can be computed with anO(eloge) algorithm [6].

A membership proof that primepi is in the set, consists of (A,Wi , pi), and the
author’s signature onA. The proof is verified by checking the signature onA and
that A = (Wi)pi . By the Strong RSA Assumption [6], it is hard for a computation-
ally bounded adversary to findy > 1 such thatgy = A mod N without knowing the
factorization ofN.

Bari and Pfitzmann [6] observed that we can generateprime representativesfor
arbitrary keys in the random oracle model by cryptographically hashing the key and
then appending a fixed numbert of extra bits. t is chosen such that there is a prime
number in

[

2t(X), 2t(X + 1)
)

with high probability. The value of those extra bits is
chosen such that the concatenation is a prime number. Inputsfor which this is not
possible cannot be stored in the RSA accumulator. Papamanthou et. al. [30] recently
implemented an authenticated hash table following this design.

In our design, we require that the conversion from a hash value into a prime rep-
resentative is deterministic. This ensures that the RSA accumulator for a given set is
uniquely defined by the inputs to the set and can be recomputedfrom the keys being
inserted. To do this, we follow Bari and Pfitzmann [6], testing successive integers until
we find a prime number.

Design. By cryptographically hashing tuples and then converting them into prime
representatives, we can use RSA accumulators to authenticate a set of tuples as a single
O(1) accumulator that can then be bound to the version number and signed by the
author. DefineA(vq) to be the accumulator value for versionvq. A(vq) authenticates
tuples of the form ([k j, k j+1), c j) containing a key range and a contents. These tuples
can omit the version numbervq because it is in the signature over the accumulator.

Each update to a PAD now only requires adding or removing at most O(1) tuples.
The accumulator for the next snapshot,A(vq+1), can be computed by incrementally
modifying A(vq) at a cost ofO(1) exponentiations per dictionary update to add or re-
move tuples. Updates requireO(1) communication; the author sends the key being
inserted or removed from the PAD, the new accumulator, and the signature. Storage
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increases by onlyO(1) per update, just to store the changed key. The server could
compute witnesses lazily upon lookup requests at a cost ofO(n) exponentiations, using
no additional storage. Alternatively the server can expendO(n) additional storage per-
snapshot for precomputed witnesses. The server can precompute witnesses by itself
with n log2 n exponentiations. Alternatively, the author can incrementally update then
witnesses inO(n) exponentiations and send them along with the update.

When a server receives a lookup request from a client for keykq in snapshotvq,
the server returns the accumulatorA(vq), bound to the version numbervq and signed
by the author, a tupleT = ([k j, k j+1), c j) with kq ∈ [k j, k j+1), prime representative
pi , and a witness for tuplei in snapshot (vq,Wi,vq). The client verifies that the prime

representative corresponds to the returned tuple,
⌊

pi

2t

⌋

= H(T), that the accumulator
authenticates the tuple, (Wi,vq)

pi = A(vq), and that the signature on the accumulator is
valid. For efficiency, instead of sending the full prime representativepi , only the offset
from the hash of the tuple to the prime representativepi − 2tH(T) is sent.

Unlike standard accumulator schemes, this representationoffers super-efficient proofs
of non-membership. The tupleT = ([k j , k j+1), c j) attests that there is no key in the in-
terval (k j , k j+1) is in the set.

Speculation and witness computation. Accumulator-based tuple PADs can be com-
bined with speculation, as described in Section 4.2. This increases the size of a lookup
proof toO(C) but reduces the costs of witness computation fromO(n logn) toO

(

(C + 1) C
√

n
)

exponentiations per update. (Again, as we have throughout this entire paper, we assume
that after each update a snapshot is taken.)

Rather than individually sign each generation’s accumulator A(G0, v),A(G1, v) and
so forth, we could instead collect these accumulators into ashort hash chainB(v) =
H(A(G0, v),H(A(G1, v),H(A(G2, v) . . .))), and then bind the root of this hash chain,
B(v), to its version number and sign it. However, signing each generation individually
only uses 1+ 1

C√n
times more signatures than using a hash chain.

On each update to the PAD, the author performsO(C) amortized exponentiations,
one to update the accumulator forG0, and the remaining exponentiations account for
the amortized costs of updating the accumulators for the other generations. The author
then transmits the update and the new signedB(v+ 1) to the server, who can determin-
istically update its copy of the PAD.

When using speculation, onlyG0, containingO( C
√

n) tuples, is updated on every
snapshot. The amortized cost for computing witnesses over all generations using the
O(eloge) algorithm isO((C + 1) C

√
n ∗ logn). The server must store these witnesses at

an amortized cost ofO(C C
√

n) per update to the PAD.

Accumulators and tuple superseding. When we first discussed tuple superseding,
in Section 4.2, it was used to reduce the signature storage onthe server. This same
principal may be applied to witness storage on the server foraccumulators.

We alter the tuples stored in the accumulator to include the version number when
they are created, e.g., (vq, [k j , k j+1), c j). If the accumulatorA(vq+δ) contains that tuple
and is signed by the author, we consider the tuple to be valid for all versionsv ∈
[vq, vq+δ]. Thus, when a client queries for a keyk in snapshotvq′ (wherek ∈ [k j, k j+1)),
the server may send as a proof a signedA(vq+δ), the tupleT = (vq, [k j, k j+1), c j) with
k ∈ [k j , k j+1) andvq′ ∈ [vq, vq+δ], and a witness proving thatT ∈ A(vq+δ). The same
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response can authenticate any versionvq′ ∈ [vq, vq+δ]. Instead of storing one witness
for each snapshot, the server now can store only one witness,the one inA(vq+δ) that
authenticatesT.

As before, we assume a snapshot is taken after every update. Just as the situation
described in Section 4.2, each time a snapshot occurs the server must generate a full
set of witnesses. At most two of those witnesses will be for newly created tuples.
The remaining witnesses are for refreshed tuples and can supersede and replace the
witnesses previously stored. Computation cost is the same,but the per-update storage
costs drop toO(1).

Accumulators, tuple superseding, and speculation can be combined to form our
final PAD design, offering constant time on the author per update, constant communi-
cation per update, constant storage per update on the serverand constant lookup proof
size. Computing a new set of witnesses is sublinear in the numbern of keys in the pad
at O((C + 1) C

√
n) exponentiations per update. We individually sign each generation’s

accumulator in order to independently choose witnesses from different snapshots for
each generation.

4.4 Implementation details

Tuple PADs offer a more complex set of design choices, including the optimizations
described in Section 4.2. Apart from signing each tuple individually, tuple-superseding
may be used alone, or in combination with lightweight signatures. Any of these three
designs may be combined with speculation. In addition to this, we built the three
RSA accumulator-based designs described in Section 4.3. Our implementations are in
Python, using native code for most cryptographic primitives.

5 Implementation and methodology

Our code is a hybrid of C++ and Python, connected with SWIG-generated interface
wrappers. We used OpenSSL to perform DSA signatures.

Our initial implementation of each of the 21 algorithms was in Python. Python
made it much easier to design correct algorithms, debug our implementation, and
cleanly modularize the code. We then progressively ported the debugged algorithms to
C++, function by function and module by module while preservingthe original Python
implementation and applying our Python test cases against our C++ implementation.
We used profile-based analysis for our porting effort, only porting modules and func-
tions that were not bottlenecked in cryptographic or existing C++ code. To guide these
choices, we separately measured the time spent in cryptographic operations, serializa-
tion, and other areas.

We first ported persistent search trees to C++, to support our tree-based PADs,
yielding huge performance increases in the non-cryptographic code; authors generated
updates 4 times faster, servers processed updates 7.5 timesfaster, servers generated
lookup replies 27 times faster, and clients were able to verify the replies 15 times
faster.
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For tuple PADs, our current benchmarks show that crypto is expensive enough
that there would be less performance benefit in rewriting theauthor or client code in
C++. On the author, our algorithms spend at least 50% of their time in unavoidable
cryptographic operations (see Table 7). Furthermore, as wewill discuss in Section 5.3,
we will be evaluating our algorithms based on cloud-computing monetary costs. Even
without an efficient C++ implementation, the dollar-costs of bandwidth usage for tuple
PADs swamp the dollar-costs of the computation when generating replies to lookup
requests, so there is no particular benefit from doing the C++ port.

All of our benchmarks were run on an Intel Core 2 Duo 2.4 GHz Linux machine
with 4GB of RAM running in 64-bit mode and only using one core.We used Python
2.6.4 and compiled our C++ code with gcc 4.3.4. As public-key cryptographic op-
erations like RSA can be done with variable key lengths, trading off speed for cryp-
tographic strength, we selected paramaters at the “112-bitsecurity level” [28]. Keys
and values are assumed to be 28-byte hashes and modular operations are done with a
2048-bit modulus. All cryptography is performed in native Cor C++ code.

5.1 Serialization

For completeness, our evaluation includes the actual sizesof messages used in our
PAD system. To this end, we serialized each update from the author, each request from
clients, and each reply from the server. Rather than error-prone manual construction of
mutually compatible serialization code in both C++ and Python, we used the Google
protocol-buffer 3 library to do serialization for us. Protocol buffers support nested
message types and have a very low space overhead. Protocol buffers generate very fast
C++ code. The generated Python code is limited by the speed of thePython interpreter
but is still reasonably fast.

5.2 RSA Accumulators

We used the GMP library for all modular operations. Our accumulators use 184-bit
prime representatives4. The prime representative of a tuple must be found determinis-
tically. The SHA-1 hash of a tuple is concatenated with 24 zero bits and treated as an
integer. The prime representative is chosen as the numerically smallest prime number
greater than that integer, found by performing 82 Miller-Rabin [33] primality tests (as
advised by NIST [28]) to confirm a candidate representative.Due to the expense of
finding a prime representative, the author sends the offset to the prime representative
along as a hint. In our implementation, we perform all witness computation on the
server.

3http://code.google.com/p/protobuf/
4Implementing the 112-bit security level would properly require 248-bit prime representatives based

around SHA-224. Our current crypto library limited us to SHA-1 hashes. Our results therefore underestimate
the costs of RSA accumulators.
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Amazon Google
CPU time (cents/hour) 8.5 10

Storage (cents/GB*month) 15 15
Bandwidth (cents/GB) 10–17 10-12

Table 2: Costs charged by Amazon EC2 and Google AppEngine forcloud-computing
and storage.

5.3 Cloud provider economics

Given the tradeoffs in our various implementations, with some algorithms requiring
more computation and others requiring more data transmission, there is no simple way
to make categorical statements as to the relative strengthsof one algorithm over an-
other. We decided to focus on themonetary costof the algorithms as they might cost
somebody to host a computation on third-party “cloud computing” resources, such as
Amazon’s EC2 and Google’s AppEngine. (Monetary optimization was previously used
by Gray et. al. [16] in generating their “five minute rule” fortrading memory for disc
accesses.) Table 2 presents current rates for these providers. Given that both providers
charge very similar prices, we will use numbers from Amazon EC2 for our evaluations:
$.085 per CPU hour and $.13 per gigabyte sent by the server or author.

While the absolute prices may vary in the future, what matters for our analysis is the
relativeprices of storage, bandwidth, and CPU cycles. We will assumethat the author
is spending the money and will attempt to minimize the total costs for themselves
and the possibly outsourced server. For simplicity in our evaluation, we will assume
that cloud providers charge by CPU time only while the task isexecuting. Or, if a
cloud provider charges by wall-clock time, the CPU utilization is 100%. In Section 10,
we will discuss how our performance numbers can be used to analyze scenarios with
different relative costs of bandwidth and computation.

5.4 Methodology

We have too many different algorithms to compare them all directly. We reduce the
complexity of our evaluation by first performing microbenchmarks to determine opti-
mal parameters for each algorithm. We then make comparisonsacross algorithms with
longer traces.

In Sections 7 and??, we evaluate the performance of tree PADs and tuple PADs
with ourgrowing microbenchmarkwhere we start with an empty PAD, then insert a key,
take a snapshot, perform a random query against a random snapshot, and repeat the last
three steps until the dictionary size exceeds a limit. In Section 8, we present our results
of running a macro-benchmark of the different PAD algorithms’ performance when
used to store a constantly changing set of values taken from atrace of e-commerce
prices.

For each benchmark we evaluate its raw performance on the author, publisher, and
client. We then evaluate the algorithms’ cost effectiveness in the context of a cloud-
computing environment. For each algorithm, we can evaluatethe relative contribution
of bandwidth or CPU time to the monetary costs of an update or alookup. We observe
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that transmitting an extra kilobyte of data costs just as much as computing for 1/190th

of a second. This defines theprovider equilibrium rate, measured in KB/s. An algo-
rithm need not be perfectly balanced to be optimal, of course, but this demonstrates that
an optimal algorithm may well trade off somewhat more communication for a greater
savings in computation or vice versa.

We define theupdate bandwidth ratioas the result of the dividing the update size
(in KB) by the time to perform an update, in seconds5. We define thelookup bandwidth
ratio similarity. Both are measured in KB/s. For updates, we include time spent on the
author and server. For lookup proofs, we only count costs on the server.

We can compare the bandwidth ratio of an algorithm to the provider equilibrium
rate to determine whether bandwidth or CPU time is responsible for the majority of the
monetary costs of an algorithm. When the bandwidth ratio of an algorithm exceeds the
provider equilibrium rate, the bandwidth is responsible for the majority of the costs.

Incidently, this evaluation methodology also measures theupdate costs, verification
costs, and proof sizes of dynamic authenticated dictionaries based on these designs.
Recall that the only difference between a PAD and DAD is that the server for a DAD
will purge data from older versions6.

6 Tree PAD microbenchmarks

We first consider the relative performance of treaps, red-black trees, and skiplists
against microbenchmark loads. We also consider how efficiently these tree-like struc-
tures reuse state across versions, comparing path copying and three Sarnak-Tarjan vari-
ations.

6.1 Comparing tree structures

Our first evaluation considers which type of tree-like data structure runs fastest. We
performed a growing microbenchmark with 100,000 keys. In general, all three tree
algorithms performed similarly with 730-770 inserts per second, and 570-600 lookup
proof verifications per second. All three tree algorithms spent 80%-90% of their time
computing cryptographic signatures, implying that additional performance tuning on
our part would yield limited gains.

We measured all three algorithms as having an update size of 150 bytes. (Section 10
considers alternative crypto parameters and the effects on these sizes.) Red-black gen-
erates the shallowest trees, causing it to have the smallestlookup proofs, the fastest
performance, and the least RAM usage. These results can be seen in Table 3.

Although red-black trees are the most efficient option for authenticated dictionar-
ies, they are also the most complex; their implementation contains code for 38 distinct

5Equivalently, we could multiply the size of a message by the rate (in messages/sec) at which the algo-
rithm generates updates.

6While it might be tempting to remove version numbers entirely, to reduce message sizes and simplify
the system, this could enable version rollback attacks, so we leave this information in the DAD.
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Proof Lookup rate RAM used
size (KB) (keys/s) (MB)

Treap 1.96 7850 1077
Red-black 1.50 10269 841
Skiplist 2.63 4956 1587

Table 3: Performance across different tree types, inserting 100k keys, and using path-
copying to implement the repository.

Queries RAM used
(per sec) (MB)

Path Copying 10269. 841
Cache Nowhere 2.23 182
Cache Everywhere 8477. 358
Cache Median 194. 204

Table 4: Memory usage and lookup proof performance across different tree structures,
storing red-black trees containing 100k keys.

cases7. Treaps and our skiplists are much simpler, having only 13 cases. In addition
they are history independent (see Section 2.1.1), which maybe required for some ap-
plications.

6.2 Comparing tree PAD repositories

Our second evaluation of tree PADs considers the different strategies for representing
the repository for their efficiency at storing the forest of trees that represents the indi-
vidual snapshots. In our implementation, each Sarnak-Tarjan versioned node always
caches the subtree authenticator for the latest snapshot, and lookup proof generation
performance on that snapshot is between 4,900-10,200 proofs per second, depending

7The authors wish to thank Stefan Kahrs at the University of Kent for making an open-source Haskell
implementation of red-black trees that correctly handles deletion. We ported his code to Python and then
C++.

Bandwidth Ratio
Updates Lookups

Cache everywhere, 10K keys 104 12265
Cache median, 10K keys 105 533
Cache everywhere, 100K keys 106 12907
Cache median, 100K keys 106 297

Table 5: Bandwidth ratios for each red-black tree PAD algorithms summarizing the
relative monetary costs of bandwidth and CPU time. For ratio’s over the provider
equilibrium ratio (190 KB/s), proof size dominates the monetary costs. For smaller
ratios, computation time dominates.

20



 1

 10

 100

 1000

 10000

 100000

 10  100  1000  10000  100000

R
at

e 
of

 g
en

er
at

in
g 

lo
ok

up
 p

ro
of

s 
(p

er
 s

ec
)

Number of keys in dictionary 

Path copying
Cache nowhere

Cache everwhere
Cache median

Figure 5: Steady-state lookup proof gener-
ation performance for red-black trees.
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Figure 6: Amortized cost per lookup for
red-black tree PADs with two different
hash caching strategies.

on the tree used (see Section 6.1).
In Table 4 we present the RAM usage and the lookup rate for the four type of repos-

itories when querying for historical snapshots. As expected, the Sarnak-Tarjan ver-
sioned trees use much less memory than path copying trees andthe different caching
strategies follow the expected asymptotic memory usage andperformance (see Ta-
ble 1). Even though Sarnak-Tarjan versioned trees that cache everywhere have the
same asymptotic space and CPU costs as path copying trees, they use less memory
because adding to the authenticator cache is much cheaper than cloning nodes.

To better understand the scaling behavior of tree PADs, we ran asteady-state mi-
crobenchmark. We filled the PAD to some capacity, and then added one key and re-
moved one key in each snapshot. Figure 5 show how the performance of a red-black
tree varies for different keycounts in the dictionary with all four of our tree reposi-
tory strategies. As expected, the penalty for cache-nowhere and cache-median layer
increases as the dictionary gets more keys, with cache-median degrading more slowly.

6.3 Tree PADs in a cloud-computing environment

In this section we evaluate the tradeoffs between path copying and Sarnak-Tarjan ver-
sioning with the best time/space tradeoffs (cache everywhere and cache median), in a
cloud computing environment. We consider red-black trees containing 10K and 100K
keys.

In Table 5 we present our results. Surprisingly, even thoughcache median has
lookups almost 40 timesslowerthan cache everywhere, both algorithms are fast enough
that the bandwidth of the reply message yields the majority of the monetary cost of
deployment.

The average per-lookup monetary cost of a PAD algorithm can vary depending on
the ratio between lookups and updates. In Figure 6 we plot thecosts per update across
different lookup to update ratios for the different configurations of red-black tree PADs.
Cache median is 30%-60% more expensive than cache everywhere, but required 40%
less memory usage.
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Base+SS No speculation. Optimized with superseding.
Base+LW No speculation. Optimized with lightweight signatures.
Spec+SS Speculation with 2 generations. Optimized with superseding.
Spec+LW Speculation with 2 generations. Optimized with lightweight signatures.
Accumulators Speculation with 2 generations. Uses accumulators.
Chain Accum. Speculation with 2 generations. Uses accumulators in a hashchain.

Table 6: Abbreviations used to denote the different tuple-based algorithms.

6.4 Tree conclusions

For maximum performance, tree-based PADs should use Sarnak-Tarjan versioned nodes
with the cache-everywhere versioning strategy. In the casewhere very few queries are
made for historical snapshots or where memory is low, caching on the median layer
may have sufficient query throughput. We also conclude that red-black trees dominate
treaps and skiplists, running faster, having smaller lookup-proof sizes, and using less
storage. Treaps enable other useful semantics, but there isno reason to ever use a
skiplist.

7 Tuple PAD microbenchmarks

In this section, we will evaluate the various tuple PAD designs described in Section 4,
including our original designs and our new RSA accumulator extensions (see Sec-
tion 4.3).

Table 6 describes the abbreviations we will use for the different algorithms. We
do not report results of algorithms that do not use superseding, since they have the
same performance and message sizes as the algorithms using superseding. To put the
performance of tuple PADs in context, we also repeat our results for red-black trees
using the cache-everywhere strategy.

7.1 Tuple PAD author costs

In Table 7, we present the performance of each tuple PAD algorithm we analyzed.
Note that due to poor insert performance, we only ran Base+SS for 3851 inserts in the
growing benchmark instead of 10,000. If we extrapolated itsperformance at 10,000
inserts, we would expect 0.05 updates per second and a 290 KB update size. Ta-
ble 7 also demonstrates the effect of tuple PAD optimizations. It shows the benefits of
speculation, increasing performance by a factor of 25 and reducing update sizes by a
factor of 50. Lightweight signatures have a similarly strong impact on performance.
Lightweight signatures are sufficiently cheap relative to full public-key signatures that
crypto costs no longer completely dominant the runtime.

Our results clearly demonstrate the poor update performance of tuple PAD algo-
rithms. Even if we could completely eliminate the non-crypto overheads on the author,
the fastest tuple PAD is still six times slower than a simple red-black tree PAD. The
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Inserts Size (KB) Number
( per sec) % in crypto Update Proof Inserted

Base+SS 0.35 88% 114.46 0.15 3851
Base+LW 2.67 13% 156.72 0.21 10000
Spec+SS 6.6 85% 6.44 0.30 10000
Spec+LW 63. 52% 3.76 0.42 10000
Chain Accum. 62.5 79% 0.14 1.23 10000
Accumulators 64.7 81% 0.14 1.30 10000
Red-black 753. 91% 0.15 1.20 10000

Table 7: Comparing author performance, update sizes and proof sizes across differ-
ent algorithms. Crypto costs include digital signatures, finding prime representatives,
lightweight signatures, and exponentiations. Except for “Base+Supersede,” where
3851 keys were inserted, we ran each algorithm with 10,000 keys.

Updates on server Server response Client response verification
(per sec) % in crypto generation (per sec) (per sec) % in crypto

Base+SS 4.2 — 5619 653 91
Base+LW 2.4 — 4781 594 91
Spec+SS 64.8 — 2896 323 91
Spec+LW 104.4 — 2497 314 90
Chain Accum. 0.90 99% 2419 290 89
Accumulators 0.93 99% 1991 205 91
Red-black 9009. — 10221 628 88

Table 8: Comparing server and client performance. Cryptographic costs include digital
signatures, finding prime representatives, lightweight signatures, and exponentiations.

network communication needed for updating the red-black tree PAD is similarly as
small as the very best accumulator-enhanced tuple PAD.

We implemented the hash chain optimization described in Section 4.3 and observed
the same CPU performance as signing each generation’s accumulator individually be-
cause primality computation and modular exponentiation operations dominate. RSA
accumulators, although being constant size, are surprisingly large and generate lookup
proofs no smaller than red-black trees storing 10K keys. We will examine accumulators
further in Section 7.4.

7.2 Tuple PAD server costs

In Table 8, we present the server’s costs for the different PAD algorithms. On each up-
date, most algorithms do nothing other than store tuples andsignatures into the repos-
itory, taking time proportional to the update size. In this table we can see the extreme
benefits of speculation, which improves performance on the server by reducing the
number of tuples the server must process for each snapshot fromO(n) to O(

√
n). Even

using speculation, accumulator algorithms process updates much slower than because
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Bandwidth Ratio
Updates Lookups

Base+SS 37. 843
Base+LW 201. 1004
Spec+SS 39. 869
Spec+LW 149. 1046
Chain Accum. 0.124 2975
Accumulators 0.128 2975
Red-black 104. 12265

Table 9: Bandwidth ratios for each algorithm summarizing the relative monetary costs
of bandwidth and CPU time. For ratio’s over the provider equilibrium ratio (190 KB/s),
proof size dominates the monetary costs. For smaller ratios, computation time domi-
nates.

Bandwidth Ratio
Updates Lookups

Base+SS 43 925
Base+LW 85 1150
Spec+LW 65 1239
Red-black 1226 13892

Table 10: Bandwidth ratios for each algorithm, processing the luxury-goods mac-
robenchmark, summarizing the relative monetary costs of bandwidth and CPU time.
For ratios over the provider equilibrium ratio (190 KB/s), proof size dominates the
monetary costs. For smaller ratios, computation time dominates.

they have to compute witnesses on the server.
The time for a client to verify a lookup proof varies across the different algorithms.

The cost of verifying is dominated by modular exponentiations occurring in signature
verification and accumulator verification. Designs using speculation take twice as long
because usually require verifying two signatures, one in each generation.

Accumulator PADs using hash chains do not have an appreciably smaller lookup
proof. The size of a lookup proof is dominated by the 2048-bitaccumulator value
and the 2048-bit witness, required for each generation. These overheads are large
compared to the 320-bit cost of an extra signature. Hash chains somewhat improve
lookup proof verification performance. When a hash chain is used, only one signature
need be checked. This can be seen in Table 8 in the increased performance verifying a
hash chain accumulator lookup proof.

7.3 Tuple PADs in a cloud-computing environment

In this section, we evaluate the tradeoffs between the various tuple PAD designs in
the context of a cloud-computing environment. In Table 9, wepresent the bandwidth
ratio for each algorithm. Whenever the ratio exceeds 190 KB/sec, the monetary cost of
transmitting the message exceeds the monetary cost of computing the message. Every
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Figure 7: Amortized cost per lookup
for different PAD algorithms running the
growing benchmark on 10K keys.
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Figure 8: Amortized cost per lookup for
different PAD algorithms processing the
luxury-goods macrobenchmark.

implementation has a bandwidth ratio over 843 for lookups, meaning that at least 80%
of the monetary costs of these algorithms will come from bandwidth of the reply, not
the CPU time, disincentivizing us from porting our slower Python implementations to
C++. These results also show that the majority of the monetary costs of a lookup are
the bandwidth costs involved in sending the result.

The overall monetary cost of each algorithm depends on the relative ratio between
updates and lookups. In Figure 7 we plot the costs per lookup across different lookup
to update ratios for several algorithms. This plot illustrates the tradeoffs between the
different algorithms. Except for the algorithms using accumulators, which never win,
everyother algorithm is the cheapest at some ratio of lookups to updates. In the case
when there are high numbers of lookups per update, update costs becomes less impor-
tant and the smaller response sizes of Base+LW and Spec+SS cause these algorithms
to be preferable.

7.4 Accumulator tuple PAD costs

We now take a closer look at RSA accumulators as a stand-aloneentity used to au-
thenticate a set of elements that are stored on an untrusted server. We examine their
costs on the author, server, and clients. We compare the costs with simply signing each
element in the set with a DSA signature, or bundling the elements into a Merkle tree
and signing the tree root. This performance evaluation assumes the “112 bit security
level,” requiring 224-bit hashes, 240-bit prime representatives, and 2048-bit modulus
operations. Note that we are comparing the costs to store a set, not a dictionary.

In theory, the advantage of RSA accumulators compared to signing each element
separately is in saving the bandwidth required for an update. However, if witnesses
are computed on the author and sent, no bandwidth is saved as 2048-bit witnesses
are 6 times larger than 320-bit DSA signaturesand take twice as long to compute. If
witnesses are computed on the server, then an accumulator only makes sense when the
cost of the time to compute witnesses is cheaper than the costof the time and bandwidth
required to individually sign and transmit each item, as in the tuple PAD designs. With
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Amazon and Google’s prices for bandwidth and computation, it is 6 times cheaper to
simply sign each tuple and avoid accumulators. Signing eachtuple also offers lookup
proof sizes 3 times smaller.

A membership proof in an RSA accumulator requires 4096 bits,2048 bits to send
the accumulator value and 2048 bits to send the witness; thatis big enough to store over
18 224-bit hashes, capable of representing a path to any leafin a Merkle tree of depth
17, which is sufficient to represent sets of up to 256k elements. RSA accumulators
this big are glacially slow. Each update requires 10 minutesof CPU time for author-
computed witnesses or 60 minutes for server-computed witnesses.

This analysis examined the tradeoffs of using accumulators for representing a static
authenticated set. A DAD or PAD offers additional semantics, in particular, proof of
non-membership and efficient updates. We can draw the same conclusions about the
inefficiency of accumulators when used to implement a PAD or DAD from the results
reported earlier in this section.

7.5 Tuple conclusions

We can reach several conclusions from our results. RSA accumulators are so expen-
sive, from a CPU and bandwidth perspective, that we will never recover these costs. For
PADs which are updated very frequently, red-black tree PADsclearly win. However,
for more stable PADs with higher query rates, the tuple-based PAD structures, sans
the RSA accumulator, become the preferable strategy. For workloads where a widely
varying range of lookups per update might be expected, our full set of tuple PAD opti-
mizations, including speculation, lightweight signatures, and superseding, seems to be
an excellent strategy. For workloads where over 1000 lookups might be expected per
update, the non-speculative tuple PAD, but with lightweight signatures, would seem to
be the appropriate algorithm.

8 Macrobenchmark

Now that we have done many microbenchmarks of the different PAD designs, we can
analzye the performance and monetary costs of the different PAD algorithms when
used to store a constantly changing set of values taken from atrace of e-commerce
prices.

Our data set represents the selling prices of high-end luxury goods as offered by a
number of vendors on the Internet. All price observations were made between January
1, 2009 and June 30, 2009 inclusive, representing 27 distinct dates. In total, 1,272
different items were found online for the three brands, on a totalof 544 different web
sites. In total, there are 38,391 different observations in the data set. Our data tracked
the price of each item on each web site, forming 14,374 distinct keys in the PAD.8

Table 11 presents the performance of the different algorithms on this benchmark.
This dataset is very different than our microbenchmarks. Most notably, it has a coarse

8Data provided by Glenn Kramer Consulting, LLC, representing actual brands and products monitored
for an anonymous client, blinded and provided with client’spermission.
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Insert All Process All Size (KB) Lookups
Keys (sec) Updates (sec)Update Proof (per sec)

Base+SS 383. 57. 708 0.18 5354
Base+LW 131. 44. 549 0.24 4838
Spec+LW 142. 50. 460 0.42 2952
Red-black 1.84 1.44 149 1.59 9422

Table 11: Performance of different PAD algorithms on the macrobenchmark, including
the total time on the author and server to insert six months ofprice data, the average
size of an update and lookup proof, and the lookup rate.

granularity. 38K updates are contained in only 27 snapshots, leading to large update
messages. Lookup performance is as fast as we saw before.

This dataset also demonstrates that the strengths of speculation occur when there
are many snapshots and relatively few keys are modified in anyone snapshot. In Sec-
tion 4.2 we assumed only one update per snapshot, making the ideal epoch sizeO(

√
n).

Here, when there are multiple updates per snapshot the idealepoch size is
√

n/K when
there are two generations andK updates per snapshot. For our macrobenchmark, this
would result in an epoch length of 30 snapshots, more than thenumber of snapshots
in our dataset and no speculation would occur at all. Rather than artificially extending
our dataset, we used an epoch size of 6≈

√
27 for our benchmarks, to demonstrate the

advantages of speculation, which reduced the number of signature operations by 48%.
Lightweight signatures were also very beneficial, reducingthe number of public-key
signatures by over 80%.

We also performed a cloud-computing monetary cost analysisof our algorithms
over this data set. Bandwidth ratios are reported in Table 10and the bandwidth ratios
for lookup messages are within 20% of what we observed earlier in Tables 5 and 9
when running the growing benchmark. The update message bandwidth ratio for red-
black trees is much larger than we saw in Table 5 because the message size has grown
to include all of the updated keys, while the number of expensive digital signatures has
remained the same.

In Figure 8 we plot the cost per lookup. In this dataset, the large number of changes
per snapshot results in large per-update monetary costs which must be amortized over
many messages before the smaller response sizes of tuple PADs reduces their overall
costs.

From this, we can conclude that the red-black tree PAD (Sarnak-Tarjan, cache-
everywhere) is the preferred PAD algorithm until the query rate exceeds roughly 5000
lookups per update. Only then do the tuple PAD structures become more cost effective,
with the simpler “base+SS” strategy (no speculation or lightweight signatures; just su-
perseding) ultimately winning only when the query rate exceeds 25K lookups/update.
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9 Scalability

We expect that the server, in our system, may well be called upon to scale to run on
large clusters and support much higher insertion and query rates. This section considers
scalability issues for such environments and how our algorithms could be modified to
run faster in such environments.

Faster server insertion rates. Keys exist in a large key space. We can partition
that key space across a large cluster of machines, with each server responsible for
only a fraction of the key space (much as is standard practicein distributed hash table
implementations). Each server then maintains that fraction of the PAD. Assuming
keys are uniformly distributed across the key space, each server should see a uniform
fraction of the load. To guarantee this uniformity, keys could be hashed before being
stored in the PAD.

For any tuple PAD implementation, without RSA accumulators, this split is quite
natural. Different servers can be responsible for different key ranges, allowing for
excellent scalability. For tree PADs, each server would be responsible for a different
subtree, but coordination would be required for changes to the shared top levels of the
tree.

Faster client query rates. Client queries require no mutation of state on the server.
As such, server state may be arbitrarily replicated to support larger client query rates.
This would require inbound mutation operations from authors to be distributed to each
replica responsible for any given key.

Lots of snapshots. While some measure of coordination is required, as above, to
handle the most current version of a PAD, older versions are static. In a large server
cluster, older snapshots can be replicated onto dedicated machines. Any given range of
keys from any given snapshot can be stored on multiple, different servers, allowing for
excellent scalability both in terms of storage capacity andsupported client query rates.

Faster authors. Presently, we assume that the “author” is running on a singlecom-
puter, but we could imagine a large number of machines, sharing the author’s crypto
key material, concurrently authoring a PAD. Assuming the server is ready to support
the higher insertion rate, as above, the challenge is to coordinate all the author nodes.
For modest scalability, a single-threaded author can controls the tree or tuple layout,
delegating expensive cryptographic computations to othernodes in its cluster. If DSA
signatures are used, latency can be further reduced by having author nodes partially
precompute signatures [25].

For broader scaling, the author nodes could follow a partitioning strategy, similar to
that described for the server. Again, this partitioning is quite natural with tuple PADs
and will require coordination of the higher layers in the tree for tree PADs.

10 Selecting and tuning the right algorithm

Our space and time benchmarks were collected on a specific machine with a specific
set of cryptographic parameters, including 2048-bit DSA signatures, and 28-byte keys,
values, and hashes. Obviously, our measurements would be different had we used
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different cryptographic algorithms, chosen different cryptographic parameters, differ-
ent key and value sizes, or if cryptographic operations werecheaper (e.g., through
cryptographic accelerators). Without needing to re-run our benchmark runs, we can
extrapolate our results to cover a variety of scenarios:

If bandwidth gets cheaper faster than CPU get cheaper, then provider equilibrium
ratios will increase. The monetary costs of an algorithms whose bandwidth ratio is less
than the old provider equilibrium ratio will change much less than algorithms whose
bandwidth ratio is much higher. If, for example, bandwidth got ten times cheaper, then
from Table 9, we could conclude that accumulators and red-black trees, which have
bandwidth-intensive lookups, would be disproportionately affected. New prices for
lookups and updates could be computed by adapting the numbers in Tables 7 and 8 and
red-black trees would be cheaper than tuple-pads at ratios up to 200 lookup per update,
rather than 15.

If CPU gets cheaper faster than bandwidth get cheaper, a similar analysis applies.
In this case, the provider equilibrium ratios will decrease. Tables 9 and 5 shows which
algorithms are CPU-intensive, with low bandwidth ratios, that would be disproportion-
ately affected. If, for example, a cloud computing provider sold CPU for one tenth the
cost of Amazon while charging the same for bandwidth, a tree PAD caching on the
median layer would become more appealing compared the cacheeverywhere strategy,
since the cost of recomputing the hashes becomes comparatively cheaper, allowing us
to use less RAM (See Section 6.2 and Table 4). The bandwidth costs would be identi-
cal.

If cryptography was ten times cheaper, whether from hardware cryptographic accel-
erators, faster elliptic curve signature algorithms, or any other cause, crypto overheads
would drop from their current 50%–90% fraction of CPU costs to 10%–50%, resulting
in an overall increase in performance of the different algorithms by 80%–420%. The
now-lower crypto overheads would offer the opportunity for additional performance
benefits by rewriting Python code into C++.

If elliptic curve signatures were used, nothing would change for the server. ECDSA
signatures of the same security strength as regular DSA signatures are exactly the same
size, so the bandwidth costs would not change. They’re faster to compute, but that
expense is undertaken by the author, not the server.

If smaller keys were stored in the PAD, which could be stored directly rather than
first being hashed, lookup proofs in tree-based PADs would have a comparative advan-
tage, as their lookup proofs include a key and two hashes for each node of theO(logn)
expected nodes in the path from the root. In the case of a stockticker, where keys could
easily be encoded as 8 byte strings, instead of the 28-byte hashes that were used in our
benchmarking, we would expect red-black tree lookup proofsto drop from 1.2 KB to
0.95 KB, while tuple PADs would decrease by only 40 bytes if nospeculation is used
and 40·C bytes if speculating withC generations.

If more than 10K keys are stored in the PAD, tuple PAD updates would become
more expensive in CPU time and bandwidth, following theO(n) or O(C C

√
n) big-O

expectation. Tree PAD updates would require almost the sameCPU time, because
the O(1) signature computation dominates theO(logn) tree update operations. Red-
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black tree PAD lookup proofs would grow by about 340 additional bytes each time the
keycount increases by an order of magnitude, 1.53 KB for 100Kkeys, and 1.87 KB for
1M keys.

11 Conclusion

Our analysis considered two very different structures for implementing persistent au-
thenticated dictionaries: those based on Merkle tree-likedata structures and those based
on independently signed “tuples.” We implemented Merkle trees based on skiplists,
treaps, and red-black trees, along with four different strategies for how to share related
state across different versions of the trees. We implemented tuples, based onour prior
designs, including a variety of optimizations that we proposed, and adding a new de-
sign and implementation with RSA accumulators to improve the asymptotic efficiency
of our tuple design.

These algorithms make a variety of different tradeoffs between computation, band-
width, and storage. Our strategy of converting all of these units into monetary costs,
based on commodity pricing from Amazon and Google, offered useful insight into
which algorithms are preferable under which conditions. Most notably, we conclude
that the fixed costs of RSA accumulators dwarf their asymptotic benefits, making them
unsuitable for production use. We conclude that red-black trees, implemented with
Sarnak and Tarjan’s versioning strategy, and caching subtree authenticators at every
node for every version, is the optimal strategy for PADs experiencing frequent updates.
However, when the query rate grows much larger than the update rate, our tuple PAD
strategies, with our full suite of optimizations, seem to bethe preferable strategy.

We have a number of directions to consider in future work. We will pursue algo-
rithmic extensions to PADs to better support multiple, mutually-untrusting authors. We
will also examine extensions to integrate privacy featurestogether with PADs.

Given our flexible software implementation of so many different PAD variations,
we intend to pursue applications of our data structures toward more concrete problems,
such as building robust file storage above potentially untrusted storage like Amazon’s
S3 service. We also intend to release our code under a suitable open-source license.
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